

Antibiogram Profile of *Escherichia coli* Isolated from Pangas (*Pangasius sutchi*) Reared in Feed-Based Aquaculture Systems

Mst. Khadiza Khatun, Imon Kumar Shikdar and Md. Mahabubur Rahman*

Department of Fisheries, University of Rajshahi

ARTICLE INFO

Article History

Received: August 1, 2025
Accepted: September 1, 2025
Online: December 10, 2025

Keywords

Aquaculture
Pangas
E. coli
Antibiotics
Resistance

ABSTRACT

The study was conducted to isolate and identify the *E. coli* bacteria from pangas catfish (*Pangasius sutchi*) raised in feed-based aquaculture systems and to determine the level of antibiotic susceptibility rates against commonly used antibiotics in aquaculture. The fish samples were collected from different feed-based aquaculture ponds in the Rajshahi region, Bangladesh. The laboratory tests were performed in the laboratory of the Department of Fisheries at the University of Rajshahi from January to March 2024. The bacteria were isolated by selective enrichment and cultured on different agar media following the standard methods. The bacterial isolates were confirmed based on their morphological and biochemical characteristics using different biochemical tests. The antibiotic susceptibility pattern was studied by disc diffusion method with a panel of nine antibiotics viz., penicillin (10 μ g), vancomycin (30 μ g), ciprofloxacin (5 μ g), gentamicin (10 μ g), ampicillin (25 μ g), rifampicin (5 μ g), kanamycin (5 μ g), erythromycin (15 μ g), and amoxicillin (10 μ g). The identified *E. coli* isolates revealed resistance rates of 88.89%, 66.67%, 55.56%, 77.78%, 11.11%, 50.0% and 33.33% to penicillin, vancomycin, ampicillin, rifampicin, kanamycin, erythromycin, and amoxicillin, respectively. On the other hand, *E. coli* isolates revealed intermediate resistance rates of 11.11%, 22.22%, 44.44%, 22.22%, 27.78%, 50.0% and 66.67% to penicillin, vancomycin, ampicillin, rifampicin, kanamycin, erythromycin, and amoxicillin, respectively. The isolates also showed sensitivity rates of 11.11%, 100%, 100.0%, and 61.11% to vancomycin, ciprofloxacin, gentamicin, and kanamycin, respectively. The results of the study indicated that *E. coli* bacteria present in *P. sutchi* reared in feed-based aquaculture in Rajshahi were found to be resistant to commonly used antibiotics. If proper management is not followed, fish farmers and consumers could face additional challenges due to the resistant bacteria.

Introduction

Aquaculture continues to be the fastest-growing animal food-producing sector, accounting for about 46% of the total food fish supply to meet the protein needs of the increasing global population (FAO, 2016).

There has been a general increase across all continents in aquaculture's share of total fish production due to various intensifications (FAO,

*Address of correspondence

Department of Fisheries,
University of Rajshahi
E-mail: m.rahman77@ru.ac.bd(Md. Mahabubur Rahman)

© 2024 Faculty of Agriculture, RU. All rights reserved.

2016). Aquaculture plays a vital role in socio-economic and livelihood development in Bangladesh. Presently, the widespread adoption of feed-based commercial fish farming with a variety of species (carp, catfish, tilapia, etc.) is evident. Pangas (*Pangasius sutchi*) is one of the important species that has expanded tremendously throughout the country, associated with the commercialization of aquaculture. This fish is considered one of the key species in feed-based aquaculture farming because of its fast growth, year-round production, and high productivity

(Abedin *et al.*, 2020). However, to achieve more production, farmers have adopted indiscriminate and unplanned use of feed that affects the environment, ultimately increasing stress on the fish and enhancing their susceptibility to various pathogens, especially bacteria, which lead to diseases in fish. Several pathogenic bacteria are associated with fish and the fish culture environment, among which *Escherichia coli* is significant because some strains can be transferred to humans and cause foodborne diseases. To minimize the detrimental effects of pathogenic bacteria, various types of antimicrobial agents, apart from antibiotics, have been used by farmers for treatment for a long time. Antibiotics are the most significant type of antibacterial agent for combating bacterial infections (Mog *et al.*, 2020). In modern culture systems, antibiotics are employed prophylactically and therapeutically to protect fish from bacterial diseases and promote growth (Avseveret *et al.*, 2010). However, most farmers in our country do not have adequate knowledge about the stability and efficacy of antibiotics (Mog *et al.*, 2020). They are often influenced by extensive promotional campaigns from pharmaceutical companies, which encourage the indiscriminate use of antibiotics without understanding their necessity and proper dosage. Such uncontrolled antibiotic practices within the aquaculture system may contribute to the rise of antimicrobial resistance (AMR). Unfortunately, the number of antibiotic-resistant mutants of *E. coli* in the aquatic environment is increasing day by day.

The occurrence of antimicrobial resistance indicates the possibility of transferring antimicrobial resistance (AMR) genes from the aquatic environment to humans who are in close contact with the fish (Jacobs and Chenia, 2007). Thus, regular investigations into the susceptibility patterns of antibiotics used in aquaculture ponds are essential to develop awareness about safe fish production and minimize public health risks. However, several studies have been conducted on the susceptibility patterns of antibiotics used in aquaculture ponds by different authors (Kerigano *et al.*, 2023; Ayoub *et al.*, 2021; Hamom *et al.*, 2020; Begum *et al.*, 2019), but the susceptibility pattern of antibiotics used in catfish culture in the Rajshahi region is scarce. Therefore, the present investigation was conducted to isolate and identify *E. coli* bacteria from pangas (*P. sutchi*) raised in a feed-based aquaculture system and to determine the levels of antibiotic susceptibility rates of the isolated bacteria against commonly used antibiotics.

Materials and methods

Study design

The entire study was divided into four steps. The first step involved the collection of samples. The second step involved the preparation of bacterial samples and culture media for the isolation of suspected bacteria. The third step included the identification of the bacterial isolates through testing characteristics. Lastly, the fourth step included the determination of the antimicrobial sensitivity pattern of the suspected bacteria.

Collection and preparation of the sample

The fish samples (*P. sutchi*) were collected from various feed-based culture ponds located in the Rajshahi region, Bangladesh. During collection, fish samples were handled to avoid touch, and an icebox was used to maintain a cold chain. The collected samples were analyzed in the Quality Control Laboratory in the Department of Fisheries at the University of Rajshahi for three months (January to March 2024). The intestine, gut, and muscle of the fish were used for microbiological testing. Ten (10) grams of samples were homogenized using a stomacher machine with 90 milliliters of freshly prepared 0.1% peptone salt solution.

Selective enrichment and isolation of bacteria

One (1) mL of the prepared samples was inoculated into test tubes containing 9 mL of MacConkey Broth with Neutral Red. After inoculation, the test tubes were incubated at 37°C for 24 hours for bacterial growth. Then, one loop of enriched bacteria from MacConkey broth was streaked onto selective and non-selective agar media, including nutrient agar, MacConkey agar (MCA), Eosin Methylene Blue (EMB) agar, Blood Agar (BA), and Tryptone Soya Agar (TSA), respectively. After streaking, all the media were incubated at 37°C for 24 hours.

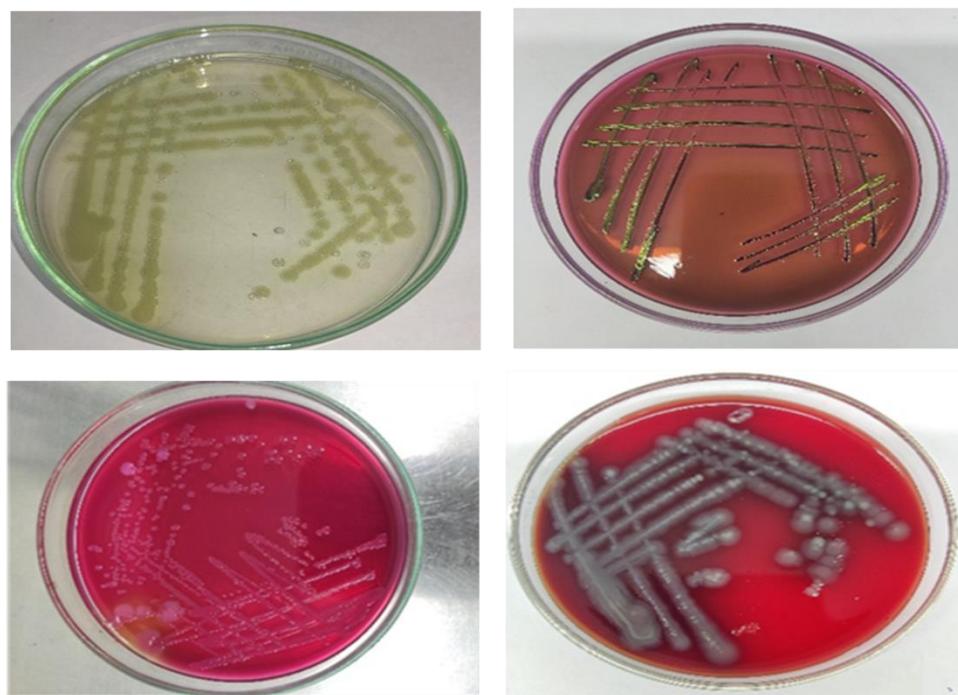
Identification of bacteria

Colony morphology, including shape, size, surface texture, edge and elevation, color and opacity, pigmentation of the suspected colonies on different agar media developed after 24 hours of incubation, was carefully observed. Various biochemical tests, namely Catalase, Coagulase, Methyl Red (MR), Voges-Proskauer (VP), Indole, Triple Sugar Iron (TSI) agar slant reaction, and Citrate Utilization test, were performed to identify the bacteria.

Antibiotic sensitivity test

The antimicrobial sensitivity testing of isolated bacteria was conducted using the Kirby-Bauer disc diffusion method. A total of nine antibiotic sensitivity discs, including Penicillin (10 µg), Vancomycin (30 µg), Ciprofloxacin (5 µg), Erythromycin (15 µg),

Gentamicin (10 µg), Ampicillin (25 µg), Amoxicillin (10 µg), Rifampicin (5 µg), and Kanamycin (5 µg), were utilized for the examination to determine the antibiotic susceptibility patterns of the isolated bacteria. The bacterial isolates were spread onto Mueller-Hinton Agar (MHA) plates using a swab, which resulted in heavy growth. Then, the antibiotic discs were placed aseptically on the surface of the agar plates. The plates were incubated at 37°C for 24 hours. The zone of inhibition was measured using slide calipers, and the isolates were classified as resistant, intermediate, or sensitive to a particular antibiotic based on the standard interpretation updated according to the Clinical and Laboratory Standards Institute guidelines.


Data analysis

Documented data were sorted, tabulated, and analyzed with the help of computer software MS-Excel (Microsoft Office Professional Plus 2019).

Results

Isolation and identification

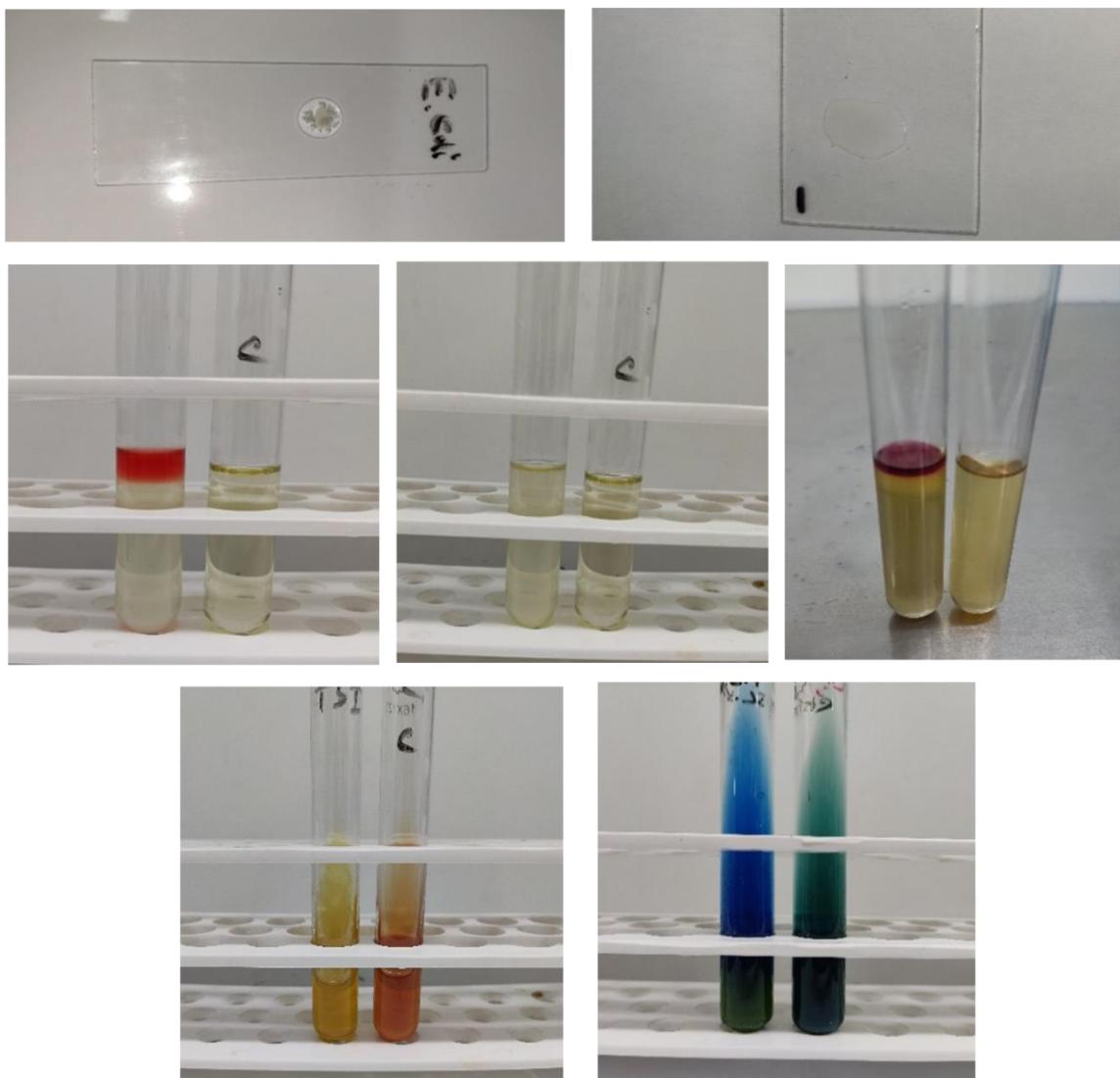
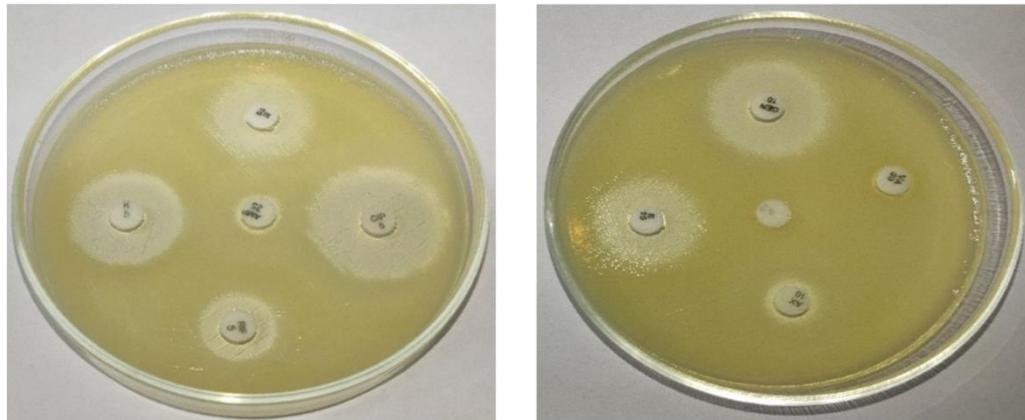

All the samples were bacteriologically tested and resulted positive for *E. coli* bacteria, which were identified through morphological characteristics, including colony color, shape, and transparency in different media as well as a series of biochemical tests such as catalase, coagulase, MR-VP, indole, TSI, and citrate utilization (Tables 1 & 2 and Plate 1 & 2).

Plate 1: Morphological characteristics of *E. coli* isolates in different agar media

Table 1: Summary of cultural characteristics of *E. coli* on the different agar media

Name of the media	Characteristics
Nutrient Agar (NA)	Round, smooth, and whitish-gray colonies
Mac Conkey Agar (MCA)	Smooth, pink colonies
Blood agar (BA)	Circular, smooth, and whitish-gray in colonies
Eosin Methylene Blue (EMB) Agar	Smooth, circular metallic green sheen colonies

Plate 2: Biochemical tests results of *E. coli*


Table 2: The summary of biochemical tests result of the isolated *E. coli*

Test name	Result
Catalase test	+ve
Coagulase test	-ve
Methyl Red (MR) test	+ve
Voges-Proskauer (VP) Test	-ve
Indole Test	+ve
Triple Sugar Iron (TSI) Test	+ve
Citrate Utilization	+ve

Antibiotic sensitivity test

The results of the antibiotic sensitivity pattern of the isolated *E. coli* are shown in Table 3, Fig.1 and Plate 3. The isolated *E. coli* showed 88.89%, 66.67%, 0.0%, 55.56%, 77.78%, 11.11%, 50.0% and 33.33% resistant to penicillin, vancomycin, ciprofloxacin, gentamicin, ampicillin, rifampicin, kanamycin, erythromycin, and amoxicillin, respectively. On the contrary, 0.0%, 11.11%, 100%, 100%, 0.0%, 0.0%, 61.11%, 0.0% and

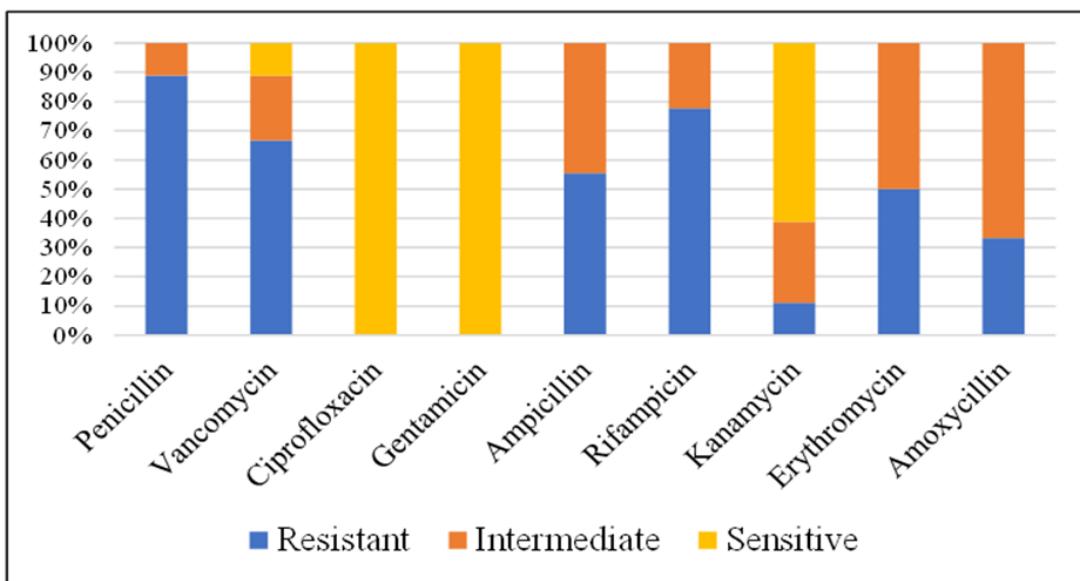

0.0% sensitive to penicillin, vancomycin, ciprofloxacin, gentamicin, ampicillin, rifampicin, kanamycin, erythromycin and amoxicillin, respectively. Intermediate sensitivity was also observed in the isolate to the antibiotics, and those were 11.11%, 22.22%, 0.0%, 0.0%, 44.44%, 22.22%, 27.78%, 50.0% and 66.67% to penicillin, vancomycin, ciprofloxacin, gentamicin, ampicillin, rifampicin, kanamycin, erythromycin, and amoxicillin, respectively (Table 3 and Fig. 1).

Plate 3: Antibiotic sensitivity and resistant pattern of *E. coli* on Mueller Hinton Agar (MHA) media

Table 3: Results of antibiotic sensitivity pattern of *E. coli* isolated from *P. sutchi*

Name of Antibiotic	Dose (μg)	Antibiotic sensitivity pattern (%)		
		Resistant	Intermediate sensitive	Sensitive
Penicillin	10.	88.89	11.11	0.0
Vancomycin	30	66.67	22.22	11.11
Ciprofloxacin	5	0.0	0.0	100.0
Gentamicin	10	0.0	0.0	100.0
Ampicillin	25	55.56	44.44	0.0
Rifampicin	5	77.78	22.22	0.0
Kanamycin	5	11.11	27.28	61.11
Erythromycin	15	50.0	50.0	0.0
Amoxicillin	10	33.33	66.67	0.0

Fig. 1. Antibiotic sensitivity pattern of *E. coli* isolated from *P. sutchi*

Discussion

Pangas (*P. sutchi*) is considered an important catfish species in Bangladesh. Pangas farming often involves high stocking densities and feeding rates, which can lead to increased organic matter in the water. This organic matter can contribute to the growth and survival of *E. coli*. The presence of *E. coli* in catfish, especially high levels or certain strains, can pose a risk to both fish and human health. It's a common indicator of fecal contamination and the potential presence of other harmful bacteria. It can be introduced through various sources such as contaminated water, contaminated fish feeds, feces from other animals, and even wild birds. Runoff from pastures and farmland, or flooding, can carry *E. coli* into catfish ponds. Various studies have been conducted to understand the prevalence, antibiotic resistance, and potential health risks associated with *E. coli* in catfish (Ngoc *et al.*, 2022; Khan *et al.*, 2023; Amin *et al.*, 2024) and other fish species (Begum *et al.*, 2019; Kusunuret *et al.*, 2022; Rana *et al.*, 2025). However, in the present study, the presence of *E. coli* in all the samples of muscles, liver, and intestine of apparently healthy *P. sutchi* from the feed-based aquaculture ponds was confirmed by the various morphological and biochemical studies. Its presence in aquaculture settings can indicate potential issues with water quality and hygiene of the selected farms. The presence of *E. coli* in intestines, gills, liver, spleen, and

brain of different freshwater fish species (Al-Harbi, 2003; Guzman *et al.*, 2004) and culture ponds is a common occurrence, but it's crucial to monitor its levels and implement appropriate management strategies to mitigate potential risks to fish health and food safety.

While the presence of *E. coli* doesn't solely indicate the fish is unsafe to eat, it's a food safety concern due to potential antibiotic resistance. *E. coli* is a common bacterium found in pangas fish and their culture environment, and studies have shown that a significant portion of *E. coli* isolates from the ponds exhibit antibiotic resistance. In present study, the resistance analysis of *E. coli* to various antibiotics showed that the isolates were found to be varying degree of resistant to penicillin, rifampicin, vancomycin, ampicillin, erythromycin, and amoxicillin. The present findings are identical with the report of Karki *et al.* (2013) who found all isolates from fish revealed resistance to penicillin and sensitivity to gentamicin. The *E. coli* isolates in this study were sensitive to ciprofloxacin, gentamicin, and kanamycin. This is in line with the findings of Abraham *et al.* (2011) and Al-Salauddin *et al.* (2015) whose findings were similar to bacterial human pathogens highly sensitive to ciprofloxacin and gentamycin. The isolates of *E. coli* were observed to be multidrug-resistant, which may pose a severe threat to public health. The antibacterial resistance observed in the isolated *E. coli* might be due to the

indiscriminate use of these antibacterial agents in fish where they were cultured. In Bangladesh, the issue of multidrug-resistant strains of *E. coli* is frequently raised due to the abuse of antibiotics (Islam *et al.*, 2016).

Conclusion

To minimize the detrimental effects of bacterial infection, various types of antimicrobial agents have been used for treatment purposes in our country for a long time. The present study concluded that *E. coli* bacteria present in pangas catfish (*P. sutchi*) raised in a feed-based aquaculture system in the Rajshahi region were found to be resistant to commonly used antibiotics except ciprofloxacin, gentamicin, and kanamycin. Therefore, due to the widespread emergence of resistant bacteria, it is crucial that susceptibility testing is performed routinely to ensure the effective use of antibiotics and to support the development of sound treatment guidelines.

Authors' Contribution

Conceptualization, MKK and MMR; Methodology, MKK and MMR; Investigation, MKK and IKS; Write-up, MKK and IKS; Supervision, MMR. All authors have read and agreed to the published version of the manuscript.

Conflict of Interest

The authors declare no conflicts of interests.

References

Abedin MZ, Aktar MB, Zaman MSU, Hasan R, Jarin L, Karim MR and Uddin ME (2020). Occurrence and antimicrobial susceptibility profiling of bacteria isolated from cultured Pangas Catfish (*Pangasius pangasius*) and Climbing Perch (*Anabas testudineus*) Fishes. *Journal of Marine Biology and Aquaculture* 6(1): 7-12. <http://dx.doi.org/10.15436/2381-0750.20.27413>

Abraham TJ (2011). Food safety hazards related to emerging antibiotic-resistant bacteria in cultured freshwater fishes of Kolkata, India. *Advance Journal of Food Science and Technology* 3(1): 69-72. <https://maxwellscli.com/print/ajfst/v3-69-72.pdf>

Al-Harbi AH and Uddin N (2003). Quantitative and qualitative studies on bacterial flora of hybrid tilapia (*Oreochromis niloticus* × *O. aureus*) cultured in earthen ponds in Saudi Arabia. *Aquaculture Research* 34(1): 43-48. <https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-2109.2003.00791.x>

Al-Salauddin AS, Hossain MF, Dutta A, Mahmud S, Islam MS, Saha S and Kabir SL (2015). Isolation, identification, and antibiogram studies of *Salmonella* species and *Escherichia coli* from boiler meat in some selected areas of Bangladesh. *International Journal of Basic and Clinical Pharmacology* 4(5): 999-1003. <https://www.ijbcp.com/index.php/ijbcp/article/view/229>

Amin MB, Talukdar PK, Sraboni AS, Islam MR, Mahmud ZH, Berendes D and Islam MA (2024). Prevalence and antimicrobial resistance of major foodborne pathogens isolated from pangas and tilapia fish sold in retail markets of Dhaka city, Bangladesh. *International Journal of Food Microbiology* 418: 110717. <https://doi.org/10.1016/j.ijfoodmicro.2024.110717>

Avsever ML, Turk N and Tunaligil S (2010). The increase of antibiotic resistance in aquaculture and its effects on human health. *Bornova Veteriner Kontrolve Araştırma Enstitüsü Dergisi* 32(46): 19-23. https://vetkontrol.tarimorman.gov.tr/bornova/Lists/SolMenu/Attachments/105/dergi_201450.

Ayoub HF, Tohamy EY and Mohamed SS (2021). Isolation, Identification and Antimicrobial profile of *Aeromonas* spp., *Pseudomonas* spp. and *Vibrio* spp. from the Nile Tilapia, *Oreochromis niloticus* in fish farms. *Egyptian Journal of Aquatic Biology and Fisheries* 25(3): 171-158. <https://dx.doi.org/10.21608/ejabf.2021.173659>

Begum S, Salauddin M, Hossain MK and Begum MD (2019). Antibiogram study of bacterial pathogen from tilapia fish in Bangladesh. *Turkish Journal of Agriculture-Food Science and Technology* 7(4): 658-664. <https://agrifoodscience.com/index.php/TURJAF/article/view/2315>

FAO (2016). The State of World Fisheries and Aquaculture. Contributing to food security and nutrition for all. Rome, Italy: p. 200. ISBN 978-92-5-109185-2. <https://openknowledge.fao.org/server/api/core/bitstreams/20e618b3-93a1-488a-9697-798f6b6c6b35/content>

Guzman MC, Bistoni MDA, Tamagnini LM and Gonzalez RD (2004). Recovery of *Escherichia coli* in fresh water fish, *Jenynsia multidentata* and *Bryconamericus iheringi*. *Water research* 38(9): 2368-2374. <https://doi.org/10.1016/j.watres.2004.02.016>

Hamom A, Alam MM, Iqbal MM, Khalil SMI, Parven M, Sumon TA and Mamun MAA (2020). Identification of pathogenic bacteria from diseased Nile tilapia *Oreochromis niloticus* with their sensitivity to antibiotics. *International Journal of*

Current Microbiology and Applied Sciences 9(03): 716-738.
<https://doi.org/10.20546/ijcmas.2020.903.200>

Islam KS, Shiraj-Um-Mahmuda S and Hazzaz-Bin-Kabir M (2016). Antibiotic usage patterns in selected broiler farms of Bangladesh and their public health implications. Journal of Public Health in Developing Countries 2(3): 276-284.
<https://www.jphdc.org/index.php/jphdc/article/view/84>

Jacobs L and Chenia HY (2007). Characterization of integrons and tetracycline resistance determinants in *Aeromonas* spp. isolated from South African aquaculture systems. International Journal of Food Microbiology 114(3): 295-306.
<https://doi.org/10.1016/j.ijfoodmicro.2006.09.030>

Karki H, Mustafa A, Master AL and Dhawale S (2013). Antibiotic-resistant bacteria in the gut of hatchery-reared tilapia and Coho salmon. Universal Journal of Microbiology Research 1(3): 43-46.
<http://dx.doi.org/10.13189/ujmr.2013.010303>

Kerigano NK, Chibsa TR, Molla YG, Mohammed AA, Tamiru M, Bulto AO and Abdi AK (2023). Phenotypic, molecular detection and antibiogram analysis of *Aeromonas hydrophila* from *Oreochromis niloticus* (Nile Tilapia) and Ready-To-Eat fish products in selected Rift Valley lakes of Ethiopia. BMC Veterinary Research 19(1): 120.
<https://doi.org/10.1186/s12917-023-03684-3>

Khan M, Haque A, Rahman MM, Paul SI, Shaha DC, Haque F and Shah AKMA (2023). Antibiotic sensitivity of the bacteria isolated from pangas (*Pangasius hypophthalmus*) fish of the retail fish market of Gazipur, Bangladesh. Food Research 7(6): 77-89.
[https://doi.org/10.26656/fr.2017.7\(6\).128](https://doi.org/10.26656/fr.2017.7(6).128)

Kusunur AB, Kuraganti GK, Mogilipuri SS, Vaiyapuri M, Narayanan SV and Badireddy, M. R. (2022). Multidrug resistance of *Escherichia coli* in fish supply chain: A preliminary investigation. Journal of Food Safety 42(3): e12972.
<https://doi.org/10.1111/jfs.12972>

Mog M, Ngasotter S, Tesia S, Waikhom D, Panda P, Sharma S and Varshney S (2020). Problems of antibiotic resistance associated with oxytetracycline use in aquaculture: A review. Journal of Entomology and Zoology Studies 8(3): 1075-1082.
<https://www.entomoljournal.com/archives/2020/vol18issue3/PartQ/8-3-144-531.pdf>

Ngoc TTA, Tu NC, Trang PN, Duy LND, Ha NC and Miyamoto T (2022). *Pangasius Hypophthalmus* Viscera as a Potential Vector of Bacterial Cross-Contamination and Resistance of *Escherichia coli* to Antibiotics. Current Research in Nutrition and Food Science Journal 10(2): 711-719.
<https://dx.doi.org/10.12944/CRNFSJ.10.2.25>

Rana ML, Ullah MA, Hoque MN, Hassan J, Siddique MP and Rahman MT (2025). Preliminary survey of biofilm forming, antibiotic resistant *Escherichia coli* in fishes from land based aquaculture systems and open water bodies in Bangladesh. Scientific Reports 15(1): 7811.
<https://doi.org/10.1038/s41598-024-80536-6>