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Abstract 
 

One of the most common protein post-translational modifications (PTMs) in eukaryotes is 

phosphorylation. Protein phosphorylation on serine (S), threonine (T) and tyrosine (Y) 

has appeared as a key scheme in the control of many biological processes. Identification 

of protein phosphorylation sites is an important and perquisite for understanding the 

mechanisms of phosphorylation. However, most the experimental methods for identifying 

phosphorylation sites are not only costly but also time consuming. Hence, sequence-based 

computational methods are highly desired. Feature selection plays an important role to 

develop the effective computational predictors of PTM sites. To select a better feature 

filtering approach for our current problem, we performed a comparative study on 

fivepopular feature selection approaches and found the non-parametric Wilcoxon-signed 

rank test approach as the better candidate for our dataset on phosphorylation sites with 

serine (S), threonine (T) and tyrosine (Y) residues. Finally, we have proposed a predictor 

combining CKSAAP encoding, Wilcoxon-signed rank test, 1:3 ratio of positives versus 
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negatives samples of windows and Support Vector Machine (SVM) classifier for 

prediction of phosphorylation sites of candidate proteins. Our data analysis results 

showed that the proposed method outperform over the existing predictors of 

phosphorylation sites. The proposed predictor exhibited the performance with accuracy 

(Ac) 98.65% (Sn =82.94%, Sp= 99.63%, MCC=0.873) for S, accuracy (Ac) 98.81% (Sn 

= 91.52%, Sp =99.19%, MCC= 0.877) for T and accuracy (Ac) 97.83% (Sn =97.62%, Sp 

=99.38%, MCC= 0.909) for Y at 10% false positive rate. Thus, the proposed method 

would be helpful computational method for the phosphorylation sites prediction. 

Key words: Protein sequences, Protein phosphorylation Site, CKSAAP encoding, 

Support vector machine, Wilcoxon Signed-Rank Test, and Amino acid frequency. 

AMS Classification: 92D20. 
 

1.  Introduction 

Phosphorylation is one of the most common protein post-translational 

modifications (PTMs) in eukaryotes which plays significant roles in a wide range 

of cellular processes, such as DNA repair (Wood et al., 2009), regulation of 

transcription (Uddin et al., 2003), immune response (Kim et al., 2011), 

metabolism (Bu et al., 2010), cellular motility (Ressurreico et al., 2011), and 

environmental stress response (Wang etal., 2010). Protein phosphorylation PTM 

site is added to an amino acid residue (S, T, and Y) of a protein molecule. As one 

of the most challenging PTM site, phosphorylation is involved in many biological 

processes including cell cycle, apoptosis. Phosphorylation of amino acid residues 

serine (S), threonine (T) and tyrosine (Y) which is common in cancer-associated 

proteins (Iakoucheva et al., 2004) and known to be deregulated in cancer (Lim et 

al. 2005). Coding-region mutations in human genes are responsible for a diverse 

spectrum of diseases and any other phenotypes. A study (Cohen et al., 2002) 

indicates that 30% of proteins in the human genome can be phosphorylated, and 

abnormal phosphorylation is now recognized as a cause of human disease. The 

malfunctioning of specific chains of protein tyrosine kinases and protein tyrosine 

phosphatase has been linked to multiple human diseases such as obesity, insulin 

resistance, and type-2 diabetes mellitus. Phosphorylation of glucose is imperative 

in processes within the body. For example, phosphorylating glucose is necessary 

for insulin-dependent mechanistic target of rapamycin pathway activity within the 

heart. This further suggests a link between intermediary metabolism and cardiac 

https://en.wikipedia.org/wiki/Mechanistic_target_of_rapamycin
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growth. The most commonly associated histone phosphorylation occurs during 

cellular responses to DNA damage, when phosphorylated histone H2A separates 

large chromatin domains around the site of DNA breakage. Identification of 

phosphorylated substrates and their corresponding sites will facilitate the 

understanding of the molecular mechanism of phosphorylation. So now days it is 

very important to study protein phosphorylation sites. Comparing with the labor-

intensive and time-consuming experiment approaches, computational prediction 

of phosphorylation sites is much desirable due to their convenience and fast speed. 

Therefore, in this article, we would like to study the computational methods for 

prediction of phosphorylation PTM sites. The aberrances of PTMs are highly 

associated in diseases and cancers, while a variety of regulatory enzymes involved 

in PTMs have been drug targets (Lahiry et al., 2010; Norvell et al., 2010). In this 

regard, elucidation of PTMs regulatory roles is fundamental for understanding 

molecular mechanisms of diseases and cancers, and further biomedical design. It 

has been estimated that 30–50% of the proteome undergone 

phosphorylation (Pinna et al., 1996). Therefore, accurate recognition of the 

phosphorylation substrates and the corresponding phosphorylation sites may help 

fully decipher the molecular mechanisms of phosphorylation related biological 

processes. Conventional experimental identification of phosphorylation sites with 

a site-directed mutagenesis strategy is laborious, expensive, and low-

throughput (Meier et al., 1997). Recently, the appearance of high-throughput mass 

spectrometry technique (Jensen et al. 2004) has greatly accelerated the 

identification of novel phosphorylation sites. Accordingly, several 

phosphorylation site databases have been established, such as 

‘Phospho.ELM’ (Xue et al., 2008), ‘Phosphorylation Site Database’ (Gnad F et 

al., 2007), ‘PhosPhAT’(Heazlewood JL et al., 2008), and 

‘Phosphosite’ (Hornbeck PV et al., 2004). However, some limitations of this 

technique (Boersema PJ et al., 2009) make the exact prediction of phosphorylation 

sites difficult, and it always requires very expensive instruments and specialized 

expertise that are usually not available in general laboratories. With the increasing 

availability of protein sequence data, there is an urgent need for computational 

tools that can rapidly and reliably identify phosphorylation sites. In recent years, 

many computational predictors have been developed and applied with varying 

success to predict phosphorylation sites (Huang H et al., 2005). For the analysis , 

proteins collected from the phosphorylation site databases Phospho.ELM .There 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3478286/#pone.0046302-Boersema1
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3478286/#pone.0046302-Huang1
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are several proposed generalized prediction tools which used the primary 

sequence information for classifying phosphorylation sites, such as 

DISPHOS(Lakoucheva L et al., 2004), Scansite (Obenauer J et al., 2003), 

PPRED (Ashis KB et al., 2010), NetPhos (Blom N et al., 1999), PHOSIDA (Gnad 

F et al., 2007), and AutoMotif Server AMS ( Plewcznski D et al., 2005). 

However, their performances are not yet in the satisfactory level. Therefore, in 

this paper, an attempt is made to propose a new predictor for phosphorylation site 

prediction. Feature selection plays an important role to develop the effective 

computational predictors of PTM sites. In order to build a more effective 

predictor, at first, we have to select a better feature selection approach by 

comparing five different popular feature selection approaches (i.e. t-test, 

Wilcoxon signed-rank, Kruskal-wallis, LIMMA and SAM) based on CKSAAP 

encoding scheme. Secondly, we haveemployed a relatively balanced ratio 

betweenthe positive and negative samples during the training of the 

classifiers (e.g. the ratio of positives versus negatives is controlled at 1:1 or 1:2 or 

1:3) based on Support Vector Machine to predict phosphorylation PTM sites. We 

have compared three ratios because of highly unbalanced datasets of the 

phosphorylation and non- phosphorylation are. In order to evaluate the 

performance of the proposed PTM Sites predictors, four measurements will be 

used: sensitivity (Sn), specificity (Sp), accuracy (Ac) and Matthew correlation 

coefficient (MCC).  

 

2.  Materials and Methods  
2.1  Datasets 

The datasets used in this paper were divided into two parts: training dataset and 

independent testing dataset. The dataset were collected from Ashis and co-

workers (Ashis KB et al., 2010). Experimentally validated phosphorylation sites 

were extracted from the Phospho.ELM database (version 8.1 released on August 

12, 2008) (Diella F et al., 2004), which contained 837 proteins covering 1450 

phosphorylated serine sites, 835 phosphorylated threonine sites and 286 

phosphorylated tyrosine sites. To classify the phosphorylated proteins, the 

experimentally validated phosphorylated sites were detected as positive samples 

(i.e. phosphorylated sites) and all the other residues as negative samples (i.e. non- 

phosphorylated sites). In order to evaluate the prediction performance among 

different predictors, we take a new dataset by taking 200 protein sequences as an 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3478286/#pone.0046302-Obenauer1
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3478286/#pone.0046302-Ashis1
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3478286/#pone.0046302-Plewcznski1
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3478286/#pone.0046302-Ashis1
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independent dataset. To develop the PTM site predictors, the sliding window 

strategy was utilized to extract positive and negative samples. We consider the 

optimal window size 27 in this paper, with 13 residues located upstream and 13 

residues located downstream of the phosphorylation sites in the protein sequences. 

Then we apply 5-fold cross-validation to evaluate and compare the performance 

of proposed predictors with existing predictors.   

2.2  Construction of feature vectors 

2.2.1  Feature encoding 

In order to build an effective prediction model, we encoded each sequence 

fragment into a numeric vector, which was the crucial step to present the classifier 

and ensemble architecture. Thus, a high-quality sequence encoding method for 

keeping the generated code compact in dimensionality was necessary. Instead of 

employing a simple binary representation, three types of amino acid feature 

encodings were adopted, including CKSAAP, binary and AAindex encoding. In 

this study, the composition of k-spaced amino acid pairs (CKSAAP) based 

encoding scheme was used. CKSAAP could reflect the characteristics of the 

residues surrounding phosphorylation sites, and it has been successfully used for 

predicting palmitoylation sites (Wang XB et al., 2009) and mucin-type O-

glycosylation sites (Chen YZ et al., 2008) to represent the sequence fragment. It 

may create (21× 21) = 441 (21means 21 types of amino acids (including the gap 

(O))) types of amino acid pairs (i.e. AA, AC, AD,. . ., OO) for every single k (k 

denotes the space between two amino acids), if window size of a fragment is 2w+ 

1. For the optimal k taking k max =5, there are 21× (kmax + 1) × 21 = 2646 

different amino acid pairs are created for each sequence. Then the feature vectors 

are calculated using the following equation: 

(
NAA

Ntotal
,

NAC

Ntotal
,

NAD

Ntotal
, … ,

NOO

Ntotal
)441                                                                        (1) 

Where Ntotal denotes the length of the total composition residues. NAA, NAC,..., 

NOO are frequency of the amino acid pair within the fragment. More details are 

available somewhere. 

2.3  Feature selection 

Feature selection techniques have become an apparent need in many 

bioinformatics applications. In machine learning as the dimensionality of the data 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3478286/#pone.0046302-Wang2
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rises, the amount of data required to provide a reliable analysis grows 

exponentially. Protein datasets have the high dimensionality problem. Each data 

point can have up to 2646 variables and processing a large number of data points 

involves high computational cost, and the analysis become very hard. To 

overcome this problem, it is necessary to find a way to reduce the number of 

features in construction. In this paper, we compare various feature selection 

techniques parametric test t-test (Jafari and Azuaje et al., 2006), non-parametric 

test Wilcoxon signed-rank, Kruskal–Wallis test. We also used some software for 

feature selection such as WEKA (Java), SAM (R) and Limma (R). Among them 

Wilcoxon signed-rank test perform better than others for sequence analysis.  

2.4  SVM learning 

Support vector machines (SVMs) was first developed by Vapnik (1995) described 

in detail by Cristianini and Shawe-Taylor (2000). Support vector machines 

(SVMs) are based on statistical learning theory, is a popular machine learning 

algorithm mainly used in dealing with binary classification problems. SVM looks 

for a rule that best maps each member of training set to the correct classification, 

and it has been widely used in bioinformatics community. Formally, given a 

training vector xi ∈ Rn and yi ∈ {−1, +1} be the corresponding class labels, i = 1, 

…, N, SVM solves the following optimization problem: 

Minimize 
1

2
w

T
.w+ c∑ ξ𝑖

𝑁
𝑖=1  

Subject to yi(w
T
.xi + b)𝑦𝑖(𝑤𝑇 . 𝑥𝑖 + 𝑏) ≥ 1 −  ξ𝑖      and   ξ𝑖 ≥ 0 

Where w is a normal vector perpendicular to the hyperplane, the regularization 

parameter C controls the trade-off between the margin and the training error, 

and  ξi is slake variables for allowing misclassifications.  

2.5  Performance Measurements 

In order to evaluate our predictor, four measurements are used: sensitivity (Sn), 

specificity (Sp), accuracy (Ac) and Matthew correlation coefficient (MCC). They 

are defined by the following formulas: 

𝑆𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 ; 0 ≤ 𝑆𝑛 ≤ 1                                                                                     (2) 

𝑆𝑝 =
𝑇𝑁

𝑇𝑁+𝐹𝑁
 ; 0 ≤ 𝑆𝑝 ≤ 1                                                                                    (3) 
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𝐴𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 ; 0 ≤ 𝐴𝑐 ≤ 1                                                                         (4) 

𝑀𝐶𝐶 =
𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁

√(𝑇𝑃+𝐹𝑁)×(𝑇𝑁+𝐹𝑃)×(𝑇𝑃+𝐹𝑃)×(𝑇𝑁+𝐹𝑁)
; −1 ≤ 𝑀𝐶𝐶 ≤ 1                            (5) 

Where, TP represents the observed positive residues predicted to be the positive 

sample, TN the observed negative residues predicted to be the negative sample, 

FP the number of the observed positive residues predicted to be the negative, and 

FN the number of the observed negative residues predicted to be the positive 

sample, respectively. The prediction validity is often examined by observing its 

ROC curve because they are able to show the trade-off between sensitivity and 

specificity and give a complete evaluation. The area under the ROC curve (AUC) 

is another important indicator, the larger, the better. 

 

3.  Results and Discussion 

Firstly, the sequence fragments were encoded as numerical vectors by using 

CKSAAP encoding scheme, then we use feature selection technique to reduce the 

problem of high dimensionality and finally the predictor was established with the 

SVM algorithm (Table 1). The feature selection method Wilcoxon signed-rank 

test gives the highest performance with accuracy (Ac) reached 99.35% for S (Sn 

=97.45%, Sp= 99.32%, MCC=0.933), accuracy (Ac) 97.15% for T (Sn = 98.38%, 

Sp =97.08%, MCC= 0.782) and accuracy (Ac) 88.95% for Y (Sn =100%, Sp 

=88.60%, MCC= 0.443). Since the predictor is a discrete classifier, the ROC 

curves for each of the three residues (S, T and Y) have been plotted, as can be 

seen in Figure 1.  By these results we can say that Wilcoxon signed-rank test is the 

best feature selection method among these five methods. After that we perform 

the average prediction results of Wilcoxon signed-rank test using diff erent 

negative data sets for 5-fold cross validation test. Using 1:1, 1:2 and 1:3 shuffled 

protein sequences as negative data set, the average prediction under MCC value is 

24.09%, 67.49% and 87.33%, respectively, when specificity controlled over 99% 

for Serine (S) site. The prediction MCC increases with the increase of ratio of 

dataset. The similar cases happened for Threonine (T) and Tyrosine (Y) sites 

(Table 2).  Then we plot the ROC curve for comparison of the ratio for three sites 

(Figure 2). Finally we checked the Performance of our proposed method with 

different predictors in terms of serine (S), threonine (T) and tyrosine (Y) site 

prediction on the independent datasets (Table 3), and we found that with 
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CKSAAP encoding, SVM classification and for 1:3 cost validation, Wilcoxon 

signed-rank test is perform as the best feature selection method for 

phosphorylation site prediction.   

Table 1: Comparison of the feature selection methods in terms of serine (S), 

threonine (T) and tyrosine (Y) site prediction based on test dataset 
Site Methods Test.error AUC Sn (%) Sp (%) Ac (%) Mcc 

S t-test 0.03088114 0.9811 96.32 99.36 96.91 0.932 

Wilcoxon 

signed-rank 

0.006450727 0.9966 97.45 99.32 97.00 0.933 

Kruskal-wallis 0.04982158 0.9488 94.73 95.02 95.02 0.205 

LIMMA 0.05037057 0.9415 93.33 94.96 94.96 0.180 

SAM 0.04982158 0.9415 93.33 94.96 94.96 0.180 

T t-test 0.06911974 0.9238 91.66 93.10 93.08 0.312 

Wilcoxon 

signed-rank 

0.02846107 0.9774 98.38 97.08 97.15 0.782 

Kruskal wallis 0.07725147 0.7117 50.00 92.34 92.27 0.063 

LIMMA 0.07745477 0.6759 42.85 92.32 92.25 0.049 

SAM 0.07725147 0.7117 50.00 92.34 92.27 0.063 

Y t-test 0.1245804 0.9366 1.00 87.32 87.54 0.325 

Wilcoxon 

signed-rank 

0.1104066 0.943 1.00 88.60 88.95 0.443 

Kruskal-wallis 0.1294293 0.7344 56.84 90.04 87.05 0.384 

LIMMA 0.1346512 0.7186 53.61 90.11 86.53 0.372 

SAM 0.1294293 0.7545 61.03 89.87 87.57 0.394 
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Figure 1:  ROC curves of feature selection methods in terms of serine (S), 

threonine (T) and tyrosine (Y) site site prediction based on test dataset. 
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Table 2: The prediction performance of the method based on the ratio of different 

positive and negative datasets of serine (S), threonine (T) and tyrosine (Y) site 
Site Methods 1:1 1:2 1:3 

S Test.error 0.4121603 0.04831183 0.01345045 

AUC 0.5537 0.7583 0.9129 

Sn 0.1100208 0.5206490 0.8294393 

Sp 0.9974509 0.9959140 0.9963546 

Ac 0.5878397 0.9516882 0.9865495 

MCC 0.2409693 0.6749445 0.8733477 

T Test.error 0.431787 0.07027175 0.01180346 

AUC 0.5485 0.7047 0.9536 

Sn 0.1028145 0.4168766 0.9152542 

Sp 0.9942166 0.9924522 0.9919215 

Ac 0.5682130 0.9297282 0.9881965 

Mcc 0.2179919 0.5736761 0.8772376 

Y Test.error 0.2857143 0.03319657 0.02163372 

AUC 0.6555 0.9355 0.985 

Sn 0.3248639 0.8921833 0.9938650 

Sp 0.9860671 0.9787879 0.9762208 

Ac 0.7142857 0.9668034 0.9783663 

Mcc 0.4386274 0.8622766 0.9090009 
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Figure 2: ROC curve for comparison of ratio for Serine (S), Threonine (T), 

Tyrosine (Y) site. 
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Table 3: Performance of different predictor and proposed method in terms of 

serine (S), threonine (T) and tyrosine (Y) site prediction on the independent 

datasets 
Site Methods Sn (%) Sp (%) Ac (%) MCC (%) 

S CKSAAP_PhSite 84.81 86.07 85.43 70.90 

DISPHOS 38.88 98.90 96.11 44.03 

PPRED 72.62 56.54 62.87 28.60 

NetPhos 47.78 74.75 64.70 23.10 

Proposed Method 82.94 99.63 98.65 87.3 

T CKSAAP_PhSite 78.59 82.26 80.31 59.90 

DISPHOS 22.22 94.19 88.24 21.11 

PPRED 48.26 70.34 62.12 18.7 

NetPhos 47.78 74.75 64.70 23.10 

Proposed Method 91.52 99.19 98.81 87.7 

Y CKSAAP_PhSite 74.44 78.03 76.21 52.40 

DISPHOS 58.33 97.91 78.30 59.21 

PPRED 43.01 65.35 56.42 8.40 

NetPhos 45.80 69.30 69.92 15.40 

Proposed Method 97.62 99.38 97.83 90.9 
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Figure 3: Three Two-Sample-Logos of the position-specific residue composition 

surrounding the phosphorylated site and nonphosphorylated sites. (A) serine site logo, (B) 

threonine site logo, (C) tyrosine site logo. These three logos were generated using the web 

server http://www.twosamplelogo.org/ and only residues significantly enriched and 

depleted surrounding phosphorylated sites (t-test, P,0.05) are shown. 
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4.  Conclusion 

Accurate identification of the phosphorylation substrates and the corresponding 

phosphorylation sites could helpfully decipher the molecular mechanisms of 

phosphorylation related biological processes. Though some researchers have 

focused on this problem, the overall accuracy of their predictionsare still not yet 

satisfied. Therefore, in this paper, an attempt is made to propose a new predictor 

for phosphorylation site prediction. Feature selection plays an important role to 

develop the effective computational predictors of PTM sites. To select a better 

feature filtering approach for our current problem, we performed a comparative 

study on five popular feature selection approaches (i.e. t-test, Wilcoxon signed-

rank, Kruskal-wallis, LIMMA and SAM) and found the non-parametric 

Wilcoxon-signed rank test approach as the better candidate for our dataset on 

phosphorylation sites with serine (S), threonine (T) and tyrosine (Y) residues. We 

have employed a relatively balanced ratio between the positive and negative 

samples during the training of the classifiers (e.g. the ratio of positives versus 

negatives is controlled at 1:1 or 1:2 or 1:3) based on Support Vector Machine to 

predict phosphorylation PTM sites. Finally, we have proposed a predictor 

combining CKSAAP encoding, Wilcoxon-signed rank test, 1:3 ratioof positives 

versus negatives samples of windows and Support Vector Machine (SVM) 

classifier for prediction of phosphorylation sites of candidate proteins. Our data 

analysis results showed that the proposed method outperform over the existing 

predictors (such as, CKSAAP_PhSite, DISPHOS, PPRED, NetPhos) of 

phosphorylation sites. In order to evaluate the performance of the proposed PTM 

Sites predictors, four measurements will be used: sensitivity (Sn), specificity (Sp), 

accuracy (Ac) and Matthew correlation coefficient (MCC). The proposed 

predictor exhibited the performance with accuracy (Ac) 98.65% (Sn =82.94%, 

Sp= 99.63%, MCC=0.873) for S, accuracy (Ac) 98.81% (Sn = 91.52%, Sp 

=99.19%, MCC= 0.877) for T and accuracy (Ac) 97.83% (Sn =97.62%, Sp 

=99.38%, MCC= 0.909) for Y at 10% false positive rate.Thus the conclusion 

derived from this paper might help to understand the phosphorylation mechanism 

more accurately. It would be help to decrease in the overall cost and time period 

for disease diagnosis and drug or vaccine discovery. 
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