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Abstract 
 

Ubiquitination is one of the most important and significant protein post-translational 

modifications (PTMs), which can regulate the cellular functions. Therefore, identification 

of ubiquitination sites is an important task for understanding the cellular mechanisms 

based on ubiquitination. Several wet lab based experimental approaches are available for 

identifying ubiquitination sites in Arabidopsis thaliana. However, those experimental 

approaches are laborious, time consuming and costly. Dry lab based in silico prediction is 

an alternative and cost effective approach for identification of ubiquitination sites. In this 

paper, we proposed an in silico method for prediction of ubiquitination sites mapping on 

A. thaliana by using random forest classifier with binary encoding features,  window size 

25 and 1:1 ratio of positive and negative samples. We observed that the proposed 

prediction models perform better than the other candidate prediction models with both 

training and independent test sequence datasets. The proposed method achieves an AUC 

score 0.86 and 0.84 with the training and independent test dataset, respectively. The 

proposed model would be helpful computational resource in predicting ubiquitination 

sites mapping on Arabidopsis thaliana as well as others related species.  . 

Keywords: Arabidopsis thaliana, Ubiquitination site prediction, Binary encoding, 

Feature selection, Random forest classifier. 
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1.  Introduction 

Ubiquitination is one of the most important and significant post-translational 

protein modifications of protein which can regulate the cellular functions. 

Ubiquitination (also known as ubiquitylation) is an enzymatic and post-

translational modification (PTMs) process, in which ubiquitin (a small regulatory 

protein) is attached to a substrate protein (Welchman RL et al, 2005; Herrmann J 

et al, 2007; Tung CW et al, 2008). In the ubiquitination process, the small 

regulatory protein ubiquitin, either a single ubiquitin or chains of ubiquitin is 

bound to lysine (K) residues on the protein substrate. This process work in three 

steps, they are activation, conjugation and ligation which are performed by 

ubiquitin activating enzymes (E1s), ubiquitin conjugating enzymes (E2s), and 

ubiquitin ligases (E3s), respectively (Welchman RL et al, 2005; Herrmann J et al, 

2007; Tung CW et al, 2008; Walsh I et al. 2014 ). It is known that protein post-

translational modification on any cell is highly involved in lots of biological 

process and also intimately engaged with different kinds of diseases. As 

ubiquitination is one kind of post-translational modification that is why it plays a 

vital role in plants and animals. So ubiquitination is also very much related to 

various complex biological processes and diseases. Different kinds of significant 

regulatory functions and related diseases of ubiquitination have been found, such 

as hypersensitive response, proteasomal degradation and downregulation, DNA 

repair and transcription, signal transduction, and endocytosis and sorting, 

Alzheimers, infectious diseases, cancers etc, which are all important protein 

regulation functions in the biological processes (Tung CW et al, 2008; Walsh I et 

al. 2014; Kirkpatrick DS et al, 2005). 

Due to ubiquitination’s significant regulation roles in the biological system, 

extensive research has been conducted to further decipher the molecular 

mechanism of the ubiquitination process and its other regulatory roles in the 

biological processes. One of the initial and but challenging steps to understand 

more deeply about ubiquitination’s molecular mechanism. For this purpose, 

various types of experimental methods have been devoted to purify ubiquitination 

proteins to determine ubiquitination sites, such as high-throughput Mass 

Spectrometry (MS) techniques (Kirkpatrick DS et al, 2005; Peng JM et al, 2003; 

Wagner SA et al, 2011; Xu G et al, 2010), ubiquitin antibodies and ubiquitin 

binding proteins (Xu G et al, 2010), and combinations of liquid chromatography 
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and mass spectrometry. However these experimental methods are very time-

consuming, expensive and labor-intensive, because the ubiquitination process is 

dynamic, rapid and reversible (Walsh I et al. 2014). To reduce experiment cost 

and improve the effectiveness of ubiquitination site identification, different 

computational methods have been introduced and developed (Walsh I et al. 2014; 

Kirkpatrick DS et al, 2005; Chen Z et al, 2014; Hasan, M.M. et al, 2018) based on 

different classifier and encoding scheme. Nevertheless, there is still room for 

improvement in the performance of the predictors. On the other hand, there is no 

specific ubiquitination sites predictor yet for the model plant A. thaliana.  

In this paper, we would like to introduce a new computational method for 

ubiquitination site prediction mapping on the model plant A. thaliana. The trial 

version of this article was presented in the “International Conference on 

Bioinformatics and Biostatistics for Agriculture, Health and Environment” 

(Mosharaf et al. 2017) held on January, 2017. Here the updated and finalized 

version of the paper has been reported. We hope that it will be helpful to 

understand the biological implications for further decipher research about the 

ubiquitination of the model plant A. thaliana. 
 

2.  Materials and Methodology 

2.1  Data description and computational pipeline 

 Experimentally validated 417 ubiquitinated protein sequences mapping on A. 

thaliana, were collected from the Uni-ProtKB/Swiss-Prot and NCBI protein 

sequence databases. The experimentally validated 522 lysine ubiquitinated sites 

were considered as positive samples (i.e. ubiquitinated sites), while all the 

remaining sites were considered as negative samples (i.e. non-ubiquitinated sites). 

We partitioned the protein sequence dataset into training and independent test 

datasets. The training dataset was consisted of 350 protein sequences, which 

contained 450 positive sites and around 4500 negative sites. On the other hand,  

the independent test dataset was consisted of 67 protein sequences, which 

contained 72 positive sites and around 700 negative sites. For each of positive and 

negative sites, we generated 4 windows of sizes 23, 25, 27 and 29 to select one of 

them for the improvement of prediction performance. Obviously, positive sample 

and negative samples were unbalanced, which leaded over estimation or under 

estimation of the parameters in the prediction model. To overcome these 
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problems, we considered 3 balanced datasets of ratios 1:1, 1:2 and 1:3 of positive 

and negative window samples. To convert each window sequence data into 

numeric data, we consider the binary encoding scheme. To develop a good 

computational method for prediction of ubiquitination sites, we trained RF 

classifier for each of ratio and window size conditions based on the training 

dataset. Then the best model was built by optimizing the performance scores (Sn, 

Sp, Ac, AUC). The working flowchart of this proposed prediction method is 

shown in Figure 1. 

 

 

                     Figure 1: The working flowchart of in silico prediction method.  
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2.2  Sequence encoding 

With the view of building an efficient prediction method, we encoded each 

sequence fragment into a numeric vector that was the ultimate step to present the 

classifier and ensemble architecture. Thus, for keeping the generated code 

compact in dimensionality a high-quality sequence encoding method was 

necessary. In this study, the binary sequence encodings was adopted, to represent 

the amino acid features. 
 

2.3  Binary encoding 

In order to make a robust predictor, binary amino acid encoding was considered to 

calculate the positional information from the corresponding sequence fragments. In 

this study, 21 (including gap (O)) amino acids were transformed into numeric 

vectors by adopting a binary vector. The 21 types of residues were ordered as 

ACDEFGHIKLMNPQRSTVWYO. For adopting binary vector, in query proteins, 

A was represented as 1000000000000000000000 and C as 

01000000000000000000, and so on. The selected window size of surrounding 

ubiquitinated sites was 25. For the query proteins of uubiquitination sites, the 

center position was always K. Thus, it was not considered to be taken into account. 

Finally, the feature vectors with a dimensionality (21×24) = 504. We’re obtained 

from the binary encoding. 
 

2.4  Random forest classifier 

RF classifier is a collection of decision tree classifiers, wherein each tree is trained 

with a randomly selected subset of samples. The decision tree is grown as follows. 

Suppose N samples are randomly selected with replacement from the F features, 

then the best split node is selected from F features. Finally, the decision tree is 

grown as large as possible without pruning. In the construction of the forest, it is 

generalized based on most votes given by all the individual trees; within the post 

for the error estimate it does not produce bias. It is relatively robust to noise and 

outliers (Breiman L. 2001). As a supervised learning algorithm, it has been widely 

used in protein bioinformatics (Chen Z et al, 2014, Hassan MM et al, 2018, 

Hassan MM et al, 2018). The predicted result of the RF was decided by voting 

among the number of trees, which contains two classes, either positive samples 
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(ubiquitinated sites) or negative samples (non-ubiquitinated sites). In this study, 

the RF algorithm was implemented using the ‘Random Forest’ in Weka software. 
 

2.5  Feature selection 

As mentioned in ‘‘Feature encoding’’, each investigated ubiquitinated or non- 

ubiquitinated fragment was encoded into as a high dimensional vector. Therefore, 

they may not equally contribute to determine the surrounding ubiquitinated or 

non- ubiquitinated sites. To address this, we use a feature selection method 

(InfoGainAttributeEval) was adopted to distinguish them. Here we selected the 

first 1000 important features sequentially from 100, 200, 300, up to 1000. We 

analysed them and recorded their corresponding AUC scores. We observed that 

the AUC scores are almost nearest for each group of the features selected. It was 

an important issue for an ubiquitination sites prediction analysis. 
 

2.6  Performance assessment measures 

To observe the performance of the suggested ubiquitination sites predictor in 

silico method, we considered four widely used performance measures denoted as 

sensitivity (Sn), specificity (Sp), accuracy (Ac) and the Matthews correlation 

coefficient (MCC). To formulate these performance measures in our current 

context, let us consider a two-class prediction problem (binary classification), in 

which the outcomes (lysine ubiquitinated or non- ubiquitinated) are labelled either 

as positive (+) or negative (-). There are four possible outcomes from a binary 

classifier. If the predicted class is ‘+’ and the actual value is also ‘+’, then it is 

called a true positive (tp); however, if the actual value is ‘-‘, then it is said to be a 

false positive (fp). In contrast, a true negative (tn) is occurred when both the 

prediction outcome and the actual value are ‘-’, and false negative (fn) is occurred 

when the prediction outcome is ‘-’, while the actual value is ‘+’.  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝑐) =
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑓𝑛 + 𝑡𝑛 + 𝑓𝑝
 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑆𝑛) =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
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𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (𝑆𝑝) =
𝑡𝑛

𝑡𝑛 + 𝑓𝑝
 

 

𝑀𝑎𝑡𝑡ℎ𝑒𝑤 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 (𝑀𝐶𝐶)

=
(𝑡𝑝 × 𝑡𝑛) − (𝑓𝑝 × 𝑓𝑛)

√(𝑡𝑝 + 𝑓𝑝) × (𝑡𝑝 + 𝑓𝑛) × (𝑡𝑛 + 𝑓𝑛) × (𝑡𝑛 + 𝑓𝑝)
 

The values of all of these measurements lie between 0 and 1, and a higher value 

represents a better prediction. In addition, we also used the ROC (Receiver 

Operating Characteristics curve) and AUC (area under the ROC curve) measures 

to select the better predictor. An ROC space is defined by fp rate and tp rate as x and y 

axes, respectively, which depicts relative trade-offs between tp and fp. Since tp rate is 

equivalent to Sn and fp rate is equal to 1−Sp, the ROC graph is sometimes called the Sn 

vs (1-Sp) plot.  
 

3.  Result and Discussions 

The performance of PTM site predictor depends on the data adequacy, ratio 

selection of positive and negative samples, and window size of each sample. Let 

us first discuss the adequacy of the datasets in the subsection 3.1, ratio selection in 

subsection 3.2, window selection in the subsection 3.3 and then the discussion of 

the proposed method based on random forest (RF) classifier with binary encoding 

features in subsection 3.3. 

3.1  Adequacy of the dataset by two sample logo analysis 

The two sample logo (Vacic V et al, 2006) of the ubiquitinated and non-

ubiqutinated fragments of protein datasets (Figure 2) shows the amino acid 

residues combination around the lysine (k) residue. The two sample logo 

displayed a wide range of amino acids are surrounding around the centre position 

of the Lysine (K) residue. It has been observed that the Arginine (R) residues are 

the mostly surrounding the centre Lysine (K) residues in the dataset. 
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Figure 2: The amino acid propensities of surrounding ubiquitination sites 

compared to non-ubiquitination sites as displayed with the Two Sample Logos 

software. It also shows that the position between the compositional amino acids of 

the ubiquitinated and non-ubiquitinated peptides had a wide difference, especially 

those located in the positions from -12 to -1 and +1 to +12. Thus both training and 

independent test datasets are adequate for ubiquitination site prediction. 
 

3.2  Optimum ratio selection to increase the prediction performance 

       with the training dataset 
 

In nature, the ubiquitination and non-ubiquitination datasets are highly 

unbalanced. The computational result’s accuracy and efficiency are strongly 

affected due to the nature of the unbalanced datasets. To address this issue, many 

PTM site prediction studies employ a relatively balanced ratio between the 

positive and negative samples during the training of the dataset including the 

ubiquitination sites prediction as well (Chen Z et al, 2014, Hassan MM et al, 2018, 

Hassan MM et al, 2018). To select appropriate ratio to develop the predictor, we 
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computed different performance measures (Sn, Sp, Ac and AUC) with different 

ratios (1:1, 1:2, 1:3) of ubiquitination and non-ubiquitination peptides with 

different window sizes (23, 25, 27, 29) to develop a comparatively balanced 

training dataset. We observed that window size 25 produces higher performance 

scores with different ratio. For convenience of presentation, we displayed the 

performance score only for window size 25 with different ratios in table-1. From 

table-1, we observed that 1:1 ratio produces the highest performance scores 0.83, 

0.85, 0.85, 0.86 and 0.70 of Sn, Sp, Ac, AUC and MCC, respectively. Therefore, 

ratio 1:1 was selected to develop the predictor.  
 

Table 1: Performance comparison with different ratios of positive and 

negative samples 

Ratio Sn Sp Ac AUC  MCC 

1:1 0.83 0.85 0.85 0.86 0.70 

1:2 0.81 0.85 0.83 0.84 0.63 

1:3 0.80 0.85 0.81 0.82 0.60 
 

3.3  Optimum window size selection to increase the prediction 

       performance with the training dataset 

 Another issue is the optimal size of the sequence windows flanking the 

ubiquitination and non-ubiquitination sites. To select appropriate window size to 

develop the predictor fixing ratio at 1:1, we computed different performance 

measures (Sn, Sp, Ac and AUC) with different window sizes 23, 25, 27 and 29. 

We displayed the performance scores with different window sizes in table-2. From 

table-2, we observed that window size 25 produces the highest performance scores 

0.83, 0.85, 0.85, 0.86 and 0.70 of Sn, Sp, Ac, AUC and MCC, respectively, as 

before. Therefore, window size 25 was selected to develop the predictor.  

Table 2: Performance comparison with different window size. 

Window size Sn Sp Ac AUC  MCC 

23 0.82 0.85 0.81 0.85 0.62 

25 0.83 0.85 0.85 0.86 0.70 

27 0.81 0.85 0.81 0.85 0.62 

29 0.80 0.85 0.83 0.84 0.50 
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3.4  Proposed prediction model  

From the results in subsections 3.2 and 3.3 with the training dataset, our proposed 

prediction model consist of RF classifier with binary encoding features, 1:1 ratio 

of positive and negative samples with window size 25. Then we computed the 

performance scores with the independent test dataset. Table 3 shows the 

performance scores with independent test dataset. For convenience of comparison 

with the optimum results of training dataset, we also presented the performance 

scores of training dataset in table 3. Than we observed that the proposed predictor 

produces the performance scores 0.82, 0.85, 0.82, 0.84 and 0.67 of Sn, Sp, Ac, 

AUC and MCC, respectively, which is almost close to the performance with the 

training dataset. Thus the proposed predictor produces consistent results with both 

training and independent test datasets.  

Table 3: Performance comparison with training and independent test datasets 

Datasets Sn Sp Ac AUC  MCC 

Test Data 0.82 0.85 0.82 0.84 0.67 

Training Data 0.83 0.85 0.85 0.86 0.70 

 

4.  Conclusion 

In this paper, we proposed a simple and efficient computational statistical method for 

prediction of ubiquitination sites mapping on the model plant A. thaliana by using 

random forest classifier with binary encoding features, window size 25 and 1:1 ratio of 

positive and negative samples. We observed that our proposed method performed 

better for both training and independent dataset. Moreover, we expect that our 

findings might be helpful for better understanding the important rules that underlie 

the ubiquitinated proteins. The data analysis results demonstrated that the 

proposed method might be helpful to understand ubiquitination as well as the 

mechanisms of protein ubiquitination. In our method we used R-programming, 

Perl programming, Weka software and web based software for calculation and 

analysis. Although our proposed method obtained a fairly good performance, there 

are still some spaces for improvement. In the future, we would like to pay more 

attention to make an organism specific prediction method or tool for improving 

the performance of ubiquitination sites prediction. 
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