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Abstract 

Genome-wide association studies (GWAS) are powerful tools for measuring the 

association between genotype-phenotype pairs in bioinformatics. Most of the human 

diseases and traits have a strong genetic architecture. GWAS is successful in identifying 

common genetic variants underlying complex traits or diseases like cancer, type-II 

diabetes, cardiovascular disease, schizophrenia and quantitative traits such as lipid levels 

and metabolomics. Now an important approach to GWAS is to test the association 

between multiple single nucleotid6e polymorphisms (SNPs) against multiple quantitative 

phenotypes. Canonical Correlation Analysis (CCA) is one of the most popular 

multivariate statistical techniques to test the association between multiple SNPs against 

multiple quantitative phenotypes. However, it is not robust against phenotypic 

contaminations. To overcome this problem, in this paper an attempt is made to robustify 

the CCA. To robustify the CCA, we consider some popular robust analyzers like 

Minimum Covariance Determinant (MCD), Minimum Variance Ellipsoid (MVE), 

Orthogonalized Gnanadesikan-Kettering (OGK) estimators including the Minimum β-

divergence estimator. Using simulated data analysis, we observed that CCA based on 

Minimum β-divergence method (proposed) shows better performance than classical CCA 

as well as robust CCA based on MCD, MVE and OGK estimators in presence of outliers. 

Otherwise proposed method keeps equal performance to the classical CCA as well as 

robust CCA based on MCD, MVE and OGK estimators.  

Keywords: SNPs, GWAS, CCA, Quantitative traits, Outliers, Minimum β-divergence 

method. 

AMS Classification: 92D10. 
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1.  Introduction 

Genome-wide association studies (GWAS) is the most attractive area of research to 

demonstrate the layout of genotype-phenotype associations. It has developed the 

field of genetic component analysis for complex trait or disease over the past 

decade (Visscher et al., 2012; Visscher et al., 2017). GWAS study was first 

published in 2005 about the significant association of two SNPs with age-related 

macular degeneration problem (Klein et al., 2005). Recently, GWAS study plays 

an important role in identifying huge number of human disease and phenotypic 

traits that are strongly related to the genetic components. It has promising 

application in identifying genetic components for underlying complex traits or 

disease like cardiovascular disease (Deloukas et al., 2013), schizophrenia 

(Schizophrenia Working Group of the Psychiatric Genomics Consortium 2014), 

type-II diabetes (Mahajan et al., 2014), anorexia nervosa (Duncan, L., et al., 2017), 

major depressive disorder (Hyd, C. L., et al., 2016), cancers and subtypes of 

cancers (Milne, R. L., et al., 2017; Sud, A., et al., 2017), inflammatory bowel 

disease (de Lange, 2017), insomnia (Jasen, P. R., et al., 2019), body mass 

index(BMI) (Yengo  et al., 2018), quantitative traits like lipid levels (Willer, C. J., 

et al., 2013; Surraka, I., et al., 2015) and metabolomics (Kettunen et al., 2012; Shin 

et al., 2014). Later the measure of association between multiple genotype and 

multiple phenotypes provides precise results Inouyeet al., 2012). Therefore, some 

complex genotype-phenotype correlations can be detected when testing several 

genetic components simultaneously (Marttinen et al., 2014). In 2009 canonical 

correlation analysis (CCA) was used to measure the association between single 

SNP and multiple phenotypes (Ferreira and Purcell 2009). In 2012 CCA was used 

to measure the associations between multiple SNPs and multiple phenotypes 

instead of considering the permutation test (Tang and Ferreira 2012). CCA, first 

developed by Harold Hotelling (1936) and showed the application to measures the 

relationship between two sets of multidimensional variables simultaneously by 

maximizing the correlation between their linear combinations. Here we robustify 

the CCA based on Minimum β-divergence method for more precise and robust 

results even in the phenotypic contaminated data. Therefore, in this study, we 

extended the CCA as a robust method in GWAS for identifying the relationships 

between multiple SNPs and multiple phenotypes and compared its performance 

with the other methods as well as the classical method.  
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2.  Materials and Methodology 

Let X and Y denote genotype and phenotype matrices of dimensions N×G and 

N×P respectively, where N the number of samples, G and P the number of 

genotypic and phenotypic variables respectively. CCA (Hotelling 1936) provides a 

convenient statistical framework to simultaneously detect linear relationships 

between two groups of variables 𝑿 ∈ 𝑅𝑁×𝐺and 𝒀 ∈ 𝑅𝑁×𝑃where X and Y represent 

two different views of the same objects. The objective is to find maximally 

correlated linear combinations of columns of each matrix. This corresponds to 

finding vectors 𝑎 ∈ 𝑅𝐺and 𝑏 ∈ 𝑅𝑃that maximize 

𝒓 =
(𝑿𝒂)𝑻(𝒀𝒃)

‖𝑿𝒂‖‖𝒀𝒃‖
=

𝒂𝑻𝚺𝑿𝒀𝒃

√𝒂𝑻𝚺𝑿𝑿𝒂√𝒃𝑻 ∑ 𝚺𝒀𝒀 𝒃

 

The maximized correlation r is called canonical correlation between X and Y. 

Finally, for G genotypes and P phenotypes the j=min(G,P) canonical correlations 

are then calculated as the square root of the j eigenvalues of the canonical 

correlation matrix 𝚺𝐗𝐗
−𝟏𝚺𝐗𝐘𝚺𝐘𝐘

−𝟏𝚺𝐘𝐗 where, 𝚺𝐗𝐗 and 𝚺𝐘𝐘 are the G˟G and P˟P 

covariance matrices for genotypes and phenotypes respectively while 𝚺𝐗𝐘 and 

𝚺𝐘𝐗are the between G˟P (or P˟G) covariance matrices.  

 

2.1  Covariance Matrix Determination Using   Robust Method 

2.1.1  Orthogonalized Gnanadesikan Kettenring (OGK)  

Gnanadesikan and Kettenring (1972) was proposed positive definite, and 

approximately affine equivariant robust scatter matrices starting from any robust 

scatter matrix and then applied for robust covariance estimate the resulting of 

multivariate location and scatter estimates are called OGK. 

The steps to estimate the OGK estimators are as follows, 

Let 𝑿 = [𝒙𝟏, 𝒙𝟐, … , 𝒙𝐦] ∈ 𝑹𝒎×𝒏be a data matrix with rows 𝑥𝑖
𝑇(𝑖 = 1,2, … , 𝑚) and 

columns 𝑿𝑗(𝑗 = 1,2, … , 𝑝).  

Step-1: Let, m(.) and s(.) be robust univariate estimators of mean and variance.  

Step-2: Construct  𝑫 = 𝒅𝒊𝒂𝒈 (𝒔(𝒙𝟏), 𝒔(𝒙𝟐), … , 𝒔(𝒙𝒑)), and define 𝑌 = 𝑋𝐷−1 

Step-3: Compute the correlation matrix  𝑈  applying s(.) to the columns of Y:  

𝑼 = [𝒖𝒋𝒌] = {

𝟏

𝟒
(𝒔(𝒚𝒋 + 𝒚𝒌)

𝟐
− 𝒔(𝒚𝒋 − 𝒚𝒌)

𝟐
, 𝑗 ≠ 𝑘

𝟏 ,                                                            𝑗 = 𝑘
 

Step-4: Compute the eigen decomposition:𝑼 = 𝚬𝚫𝚬𝑻 
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Step-5: Project the data onto the basis eigenvectors: 𝒁 = 𝒀𝚬 

Step-6: Estimate the variances in the coordinate directions: 

𝚪 = 𝐝𝐢𝐚𝐠 (𝒔(𝒛𝟏)𝟐, 𝒔(𝒛𝟐)𝟐, … , 𝒔(𝒛𝒑)
𝟐

) 

Step-7: The estimated covariance matrix is then, 

𝚺̂ = 𝑫𝟐𝚬𝚪𝚬𝑻 

2.1.2  Minimum Covariance Determination Estimators (MCD)  

Rousseeuw (Rousseeuw 1985) introduced the minimum covariance determinant 

estimator (MCD) method to estimate the mean vector and covariance matrix along 

with outliers in multidimensional data. This method considers all subsets and then 

compute the determinant of the covariance matrix for each subset. The subset with 

the smallest determinant is used to calculate the usual mean vector, and 

corresponding covariance matrix, these estimators are called minimum covariance 

determinant estimators.  

Let 𝑿 = [𝒙𝟏, 𝒙𝟐, … , 𝒙𝐦] ∈ 𝑹𝒎×𝒏 be a data matrix. We define the mean vector 

𝝁 = (𝝁𝟏, 𝝁𝟐, … , 𝝁𝒏)𝑻and covariance matrix ∑𝑛×𝑛. Usually, MCD method attempts 

to find out the ℎ subset data (where 
𝑚

2
≤ ℎ < 𝑚) whose sample covariance matrix 

determinant is minimum. Consider all (
𝑚
ℎ

)  subsets are ℎ × 𝑛  submatrix of 

𝑿 denoted by 𝑿𝑯 .  The mean and covariance matrix for all the subsets 𝑿𝑯 is 

defined as, 

𝝁(𝑿𝑯) = 𝒉−𝟏(𝑿𝑯)𝑻𝚰𝒉 

and  𝚺(𝑿𝑯) =  𝒉−𝟏(𝑿𝑯 − 𝝁(𝑿𝑯))𝑻(𝑿𝑯 − 𝝁(𝑿𝑯)) 

Then MCD method aims to minimize the determinant of 𝚺(𝑿𝑯)from all subsets.  

i.e., 𝒉𝑴𝑪𝑫 =  𝐚𝐫𝐠𝐦𝐢𝐧𝒉∈𝑿𝒉
𝒅𝒆𝒕(𝚺(𝑿𝑯))𝟏 𝒏⁄  

Therefore, the covariance matrix estimated by this way is called MCD estimator. 
  

2.1.3  Minimum Volume Ellipsoid Estimator (MVE)  

The Minimum Volume Ellipsoid (MVE) estimator (Rousseeuw 1985) has been 

studied extensively and used in the detection of multivariate outliers. The method 

attempts to estimate the ellipsoid of minimum volume that contains a subset of at 

least 𝒉 data points. Subsets of size 𝒉 are called half sets because 𝒉 is often chosen 

to be just more than half of the data points. Then the location estimate is defined 

as the center of this ellipsoid and the covariance estimate is provided by its shape.  
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Let 𝑿 = [𝒙𝟏, 𝒙𝟐, … , 𝒙𝐦] ∈ 𝑹𝒎×𝒏 be a data matrix. We define the mean vector 

𝝁 = (𝝁𝟏, 𝝁𝟐, … , 𝝁𝒏)𝑻and covariance matrix ∑𝑛×𝑛. Usually, MVE method attempts 

to find out the ℎsubset data (where 
𝑚

2
≤ ℎ < 𝑚) whose volume of ellipsoid is 

minimum. Consider all (
𝑚
ℎ

)  ellipsoids are determined from subsets ℎ × 𝑛 

submatrix of 𝑿 (denoted by 𝑿𝑯).  Then the MVE estimator of mean and covariance 

matrix for all subsets 𝑿𝑯is defined as, 

{𝐻: (𝑿𝑯 − 𝝁(𝑿𝑯))𝑻𝚺(𝑿𝑯)−𝟏(𝑿𝑯 − 𝝁(𝑿𝑯))  ≤ 𝒌𝟐}  ≥ 𝒉                                      (i) 

Where, 𝒌is the fixed constant which explains the magnitude value of covariance 

matrix determinant and 

𝝁(𝑿𝑯) = 𝒉−𝟏(𝑿𝑯)𝑻𝚰𝒉,  

and                       𝚺(𝑿𝑯) =  𝒉−𝟏(𝑿𝑯 − 𝝁(𝑿𝑯))𝑻(𝑿𝑯 − 𝝁(𝑿𝑯)) 

The standard MVE method find out the ellipsoids determined by the covariance 

matrix which consists (q+1) observations of 𝑿. i.e., the index of each subset of size 

(q+1) is defined by 𝐻 = {1,2, … , (𝑞 + 1)} ⊂ {1,2, … , 𝑚}.  
 

2.1.4  Minimum β- Divergence method (Proposed)  

To estimate the robust covariance matrix using maximum𝛽-likelihood estimator 

(Mollah et al., 2010) we used the maximum 𝛽-likelihood estimators for the mean 

vector 𝝁𝐧×𝟏and the covariance matrix 𝚺𝒏×𝒏obtained iteratively as follows: 

𝜇𝑡+1 =
∑ 𝜑𝛽(𝑥𝑗/𝜇𝑡, ∑𝑡) (𝑥𝑗 − 𝜇𝑡)𝑥𝑗

𝑛
𝑗=1

∑ 𝜑𝛽(𝑥𝑗/𝜇𝑡, ∑𝑡)𝑛
𝑗=1

 

And∑𝑡+1 =
∑ 𝜑𝛽(𝑥𝑗/𝜇𝑡,∑𝑡)(𝑥𝑗−𝜇𝑡)(𝑥𝑗−𝜇𝑡)𝑇𝑛

𝑗=1

(1+𝛽)−1 ∑ 𝜑𝛽(𝑥𝑗/𝜇𝑡,∑𝑡)𝑛
𝑗=1

 

where, 𝜑𝛽(𝑥𝑗; 𝜇𝑡, Σ𝑡) = 𝑒𝑥𝑝 {−
𝛽

2
(𝑥 − 𝜇𝑡)𝑇Σ𝑡

−1(𝑥 − 𝜇𝑡)}, be the β-

weight function (Mollah et al., 2010). ]. It produces almost zero weight for 

contaminated data points. The notations 𝝁𝐭+𝟏 and ∑𝒕+𝟏 are the update of 𝝁𝐭and ∑𝒕 

in the (t+1)-th iteration respectively. It should be noted here that the proposed 

iterative estimation of the mean vector and covariance matrix reduces to the non-

iterative classical mean vector and covariance matrix defined as   

𝜇 =
1

𝑛
∑ 𝑥𝑗

𝑛
𝑗=1  ,  Σ =

1

𝑛
∑ (𝑥𝑗 − 𝜇)(𝑥𝑗 − 𝜇)

𝑇𝑛
𝑗=1  

For β tends to zero. 
 



 

 

 

 

 

 

 

 

92                                           International Journal of Statistical Sciences, Vol. 18, 2019 

 

2.2  Data Simulation 

To investigate the performance of the proposed method (RCCA) in a 

comparison to the traditional method, we have simulated the SNP data for a 

hypothetical gene by considering 2000 individual populations and the phenotype 

data like age, sex etc. For generating the SNP data, we consider the coalescent-

based approach called GENOME (Liang et al., 2007) and some phenotypes are 

generated by associating with SNP. Then the generated datasets are considered 

in a two matrices X and Y for SNPs and phenotypes respectively. 

3.  Result and Discussions 

To investigate the performance of our proposed method in comparison to classical 

CCA method as well as robust methods like MVE, MCD and OGK, we used our 

simulated dataset. The analysis results (Table 2) shows that the proposed method 

and all other robust methods including classical method performs are almost same  

 

in the absence of contamination (Figure 1). Again, to examine more robustness of 

the proposed method in comparison to all other robust methods including the 

Table 1: Canonical Correlation Analysis (CCA) for contaminated data 
 

Correlation 

pairs 

Classical MVE MCD OGK Proposed 
(RCCA) 

r1 0.34 

(0.000) 

0.34 

(0.000) 

0.30 

(0.000) 

0.31 

(0.000) 

0.31 

(0.000) 

r2 0.13 

(0.568) 

0.18 

(0.000) 

0.17 

(0.000) 

0.18 

(0.000) 

0.23 

(0.000) 

r3 0.12 

(0.756) 

0.14 

(0.287) 

0.14 

(0.287) 

0.17 

(0.000) 

0.19 

(0.000) 

r4 0.11 

(0.853) 

0.13 

(0.568 

0.13 

(0.568) 

0.14 

(0.293) 

0.15 

(0.159) 

r5 0.10 

(0.951) 

0.10 

(0.453) 

0.12 

(0.653) 

0.09 

(0.503) 

0.12 

(0.460) 

r6 0.08 

(0.985) 

0.089 

(0.762) 

0.069 

(0.832) 

0.087 

(0.782) 

0.089 

(0.876) 

r7 0.061 

(0.979) 

0.054 

(0.803) 

0.034 

(0.872) 

0.074 

(0.840) 

0.07 

(0.865) 

NB: The values within the parenthesis indicates the p.value. 
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classical method, we contaminated (5% only) the datasets. Then we apply the 

classical method and other robust methods including the proposed method. The 

analysis results (Table 1) shows that our proposed method performs better than 

classical method as well as robust methods (Figure 2). 

 

 

 

Table 2: Canonical Correlation Analysis (CCA) 

Correlationpairs Classical MVE MCD OGK Proposed 

(RCCA) 

r1 0.31 

(0.000) 

0.34 

(0.000) 

0.30 

(0.000) 

0.31 

(0.000) 

0.31 

(0.000) 

r2 0.23 

(0.000) 

0.21 

(0.000) 

0.21 

(0.000) 

0.22 

(0.000) 

0.23 

(0.000) 

r3 0.18 

(0.000) 

0.17 

(0.000) 

0.18 

(0.000) 

0.17 

(0.000) 

0.20 

(0.000) 

r4 0.15 

(0.005) 

0.15 

(0.000) 

0.16 

(0.000) 

0.16 

(0.000) 

0.15 

(0.009) 

r5 0.11 

(0.552) 

0.10 

(0.453) 

0.12 

(0.653) 

0.09 

(0.503) 

0.12 

(0.549) 

r6 0.08 

(0.812) 

0.089 

(0.762) 

0.069 

(0.832) 

0.087 

(0.782) 

0.089 

(0.802) 

r7 0.061 

(0.831) 

0.054 

(0.803) 

0.034 

(0.872) 

0.074 

(0.840) 

0.08 

(0.819) 

NB: The values within the parenthesis indicates the p.value. 

Table 3: Power Analysis for contaminated data 

Methods Classical    MVE  MCD OGK Proposed 

(RCCA) 

P
o
w

er
 (

fo
r 

ea
ch

 

ca
n

o
n

ic
a
l 

co
rr

el
a
ti

o
n

 p
a
ir

(r
) 1.00 1.00 1.00 1.00 1.00 

1.00 1.00 1.00 1.00 1.00 

1.00 0.97 0.97 1.00 1.00 

0.99 0.94 0.94 0.97 0.99 

0.89 0.72 0.89 0.61 0.89 

0.60 0.60 0.35 0.57 0.60 

0.68 0.58 0.50 1.00 1.00 
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We also identified the power analysis for each canonical correlation coefficient. 

This power analysis represents the probability of getting true results that means 

higher value of power is the lower probability of type-2 error. The power analysis 

results for all methods (Table 3) in the presence of contaminated data show that 

proposed method (RCCA) represents better power than the other methods. We do 

not perform the power analysis for uncontaminated data due to almost similar 

performance for all methods. 
 

4.  Conclusion 

Canonical correlation analysis (CCA) is an efficient and powerful tool for 

measuring the association between multiple genotypes and phenotypes in GWAS 

studies. This paper discusses a highly robust CCA approach using minimum β-

divergence based covariance matrix. To investigate the performance of the 

proposed method in comparison to other robust method including the classical 

method, we generated two synthetic datasets (e.g. Contaminated and 

 
Figure 1: Comparison of canonical 

correlations by different methods 

 
Figure 2: Comparison of canonical 

correlations by different methods 
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uncontaminated). The analysis results show that the classical method, MVE, MCD, 

OGK and proposed method performs equally in absence of contamination. But in 

the presence of contamination, the proposed method performs better than the 

classical method as well as MVE, MCD and OGK method. Finally, we hope that 

our work helps to extend the application area of CCA in the field of both genetics 

and outside genetics. 
 

Acknowledgments: We would like to thank both reviewer and editor for their 

valuable comments and suggestions that help us to improve the manuscript.  
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