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Abstract 

Toxicogenomics along with suitable statistical techniques can assess toxicity of chemical 

compounds (CCs) that is an effective approach to safety assessment of CCs or drugs. 

Therefore, grouping of CCs as well as genes is essential to understand the pattern of CCs 

and genes regarding toxicity issue. Probabilistic Latent Variable Model (pLVM) can 

group or cluster the variables and sampling elements simultaneously. That is the 

uniqueness of pLVM from the traditional statistical methods like K-means, hierarchical 

clustering, model based clustering etc. However, the number of latent class selection is a 

challenging job for valid result from pLVM. Because, pLVM clusters CCs and genes 

concurrently based on the latent class in the toxicogenomic dataset. In this study, we have 

used pLVM along with latent class selection methods for clustering CCs and genes. From 

the pLVM generated clusters we have discovered the toxic CCs and toxicogenomic 

biomarkers. The CCs in cluster five acetaminophen_Low, methapyrilene_High, 

nitrofurazone_Medium, acetaminophen_Medium, nitrofurazone_High,   

acetaminophen_Highis a group of toxic compounds and genes Gsta5, Gss,  Mgst2,  

Gstp1,  Gsr, Gclc,  Gclc, G6pd, 1374070_at incluster five are the toxicogenomic 

biomarkers that are regulated by the mentioned toxic CCs. In this study we have also 
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discovered significant gene-CC intersections using the logistic moving range chart 

(LMRC) on the pLVM generated gene-CC joint probability. The results obtained from 

the used method are also valid from the biological view point that has been verified from 

the literature. Therefore, the pLVM a probabilistic model can cluster CCs and genes 

simultaneously and more efficiently.   

Keywords: Toxicogenomics, glutathione metabolism pathway, chemical compounds, 

pLVM, latent class.  

AMS Classification: 92C50. 

 

1.  Introduction 

Toxicogenomics is a“omics” technology stems from toxicology has been gripped 

a great attention recently because of its safety assessment capacity of chemical 

compound in the drug development pipeline. The swift progress and evolution on 

genomic- (DeRisi et al., 1996; Duggan et al., 1999), proteomic- (Lueking et al., 

1999; Rubin and Merchant, 2000; Steiner and Anderson, 2000), and 

metabolomics- (Corcoran et al., 1997; De Beer et al., 1998) technologies enables 

the application of gene expression for understanding chemical and other 

environmental stressors’ effects on biological systems. The technologies enrich 

the emerging toxicity assessment field toxicogenomics. Furthermore, 

administrating drug on animal, prospective toxicity can be discovered through the 

gene expression analysis of target organs before phenotypic variation occurred 

(Fielden et al., 2007; Uehara et al., 2008; Hasan et al., 2018). 

The toxicogenomic experiment generates thousands of gene expression data under 

a wide range of treatment conditions (CCs together with multiple dose level and 

time points). Analysis of these enormous amount of data for identification of 

important genes and treatment conditions is a very complicated mission and 

requires very powerful statistical tools and data mining techniques. Clustering as 

well as pattern recognition techniques are also very useful in analysis of these 

types of high throughput microarray data (Valafar, 2002; Hasan et al., 

2019b).Cluster analysis techniques is the most popular technique that explore 

relationships among treatment conditions or genes/biomarkers and the relationship 

between treatment conditions and genes by grouping them based on their 

similarity. The most popular clustering algorithms are hierarchical clustering three 
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(HCT) (Eisen et al., 1998) and k-means (Tavazoie et al., 1999). HCT results a 

tree-like dendrogram merging sequentially the most similar cluster sub-nodes. K-

means is the most commonly used non-hierarchical clustering algorithm unlike in 

which samples are divided into previously defined k partitions or clusters based on 

their similarity measure. K-means algorithms and other non-hierarchical 

clustering algorithms perform poorly when random initial seeds are used but their 

performance is improved when the results from hierarchical methods are used to 

form the initial partition (PoDAa, 1989). 

In modern toxicogenomics identification of biological-related chemical 

compounds and genes is an important issue for assessing the chemical compounds 

or drugs’ safety in the early stage of drug development (Hasan et al. 2018). That’s 

why, quantification of chemical compounds and genes relationship is essential to 

know the effect of compounds on the regulation of specific gene (up or down 

regulations) that brings phenotypic changes finally. Simultaneously, clustering 

chemical compounds or genes based on their similar characteristics is also 

important for better understanding of compounds and genes characteristics. 

However, the statistical or data mining methods mentioned above or others 

traditional methods fail to clustering compounds or genes as well as quantifying 

the relationships between compounds and genes simultaneously. The topic 

modeling algorithms Probabilistic Latent Variable Model (pLVM) (Hofmann, 

2001) and latent dirichlet allocation (LDA)(Blei et al., 2003) can perform these 

job. Among these models pLVM is the most popular model for dyadic data 

analysis and applied in various fields like text mining (Zhu et al., 2005), 

bioinformatics (Bicego et al., 2010; Chang et al., 2003; Joung et al., 2006, Hasan 

et al., 2018)which usually represent high dimensional data in terms of lower 

dimensional hidden class. On the other hand, identification of significant gene-CC 

interactions is very important issue for the biologist and drug developers (Zhu et 

al., 2005, Hasan et al., 2019a). Therefore, in this study, pLVM along with a set of 

hidden class selection techniques and logistic moving range chart (LMRC) (Hasan et 

al., 2019a) are used for clustering genes as well as CCs and identification of 

significant gene-CC interactions.  

 

https://www.frontiersin.org/articles/10.3389/fgene.2018.00516/full#B1
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2.  Materials and Methods  

2.1  Datasets 

Liver and the kidney are the main detoxification organs. In the liver, glutathione 

an enzyme which scavenges reactive oxygen species, is one of the major 

detoxification players (Nyström-Perssonet al., 2013). According to (Nyström-

Perssonet al. 2013) acetaminophen, methapyrilene and nitrofurazone are the 

glutathione depleting compounds. Japanese Toxicogenomics Project (TGP) has 

been taken the scheme collecting high dimensional toxicogenomic (microarray 

gene expressions) data systematically since 2002 as a joint government-privet 

sector project (Uehara, 2010). Both In vivo and in vitro are the two main types of 

data that have produced by the TGP. The in vivo data, which was collected from 

Rattus Norvegicus at four time points (3hr, 6 hr, 9hr, 24hr) for each of four dose 

levels (control, low, middle, high) from two organs (liver, kidney). In this study, 

we consider Rattus Norvegicus’s liver expression data of 42 glutathione 

metabolism pathway genes after exposing 10 compounds including 

acetaminophen, methapyrilene and nitrofurazone along with three dose levels 

(low, medium, and high) at 24 hour time point from the TGP database. 
 

2.2  Data Processing  

In the pLVM the co-occurrence values of compounds and genes are assumed 

count value. Since each cell in the observed 𝑛 × 𝑚 gene-compound data matrix 

consisting of 𝐺 =  𝑔1, 𝑔2, ⋯ , 𝑔𝑛 genes and 𝐶 =  𝑐1, 𝑐2, ⋯ , 𝑐𝑚 compounds. The 

each and every cell of this data matrix represents the fold change expression 

value 𝑒𝑣(𝑔𝑖, 𝑐𝑗)of the 𝑖𝑡ℎ  gene and  𝑗𝑡ℎ  treatment condition. These values are 

transformed into count value #(𝑔𝑖, 𝑐𝑗) applying the following the 

formula:#(𝑔𝑖, 𝑐𝑗) =  (100 × (
1

1+exp (−𝑒𝑣(𝑔𝑖,𝑐𝑗))
)).Which was also used by (Hasan 

et al., 2018). 
 

2.3  Probabilistic Latent Variable Model 

In this study our main objective is to clustering chemical compounds (treatments) 

and genes on the basis of the transformed  n m  gene-compound count data matrix 
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where #(𝑔𝑖, 𝑐𝑗) represents weight or frequency of  the 𝑔𝑖
𝑡ℎ  gene under 

𝑐𝑗
𝑡ℎcompound or treatment condition using pLVM (Hofmann, 2001). In applying 

pLVM it is assumed that there prevail a set of unobserved latent classes 

underlying our gene-compound count data matrix. Introducing latent classes 𝑍 =

 𝑧1, 𝑧2, ⋯ , 𝑧𝑙 the model quantify the relationships between genes and latent classes 

as well as CCs and latent classes. The following are the probability definition and 

underlying assumptions accordingly: (1) 𝑃(𝑧𝑘) is the probability of the 

𝑘𝑡ℎ latentclassand ∑ 𝑃(𝑧𝑘)𝑙
𝑘=1 = 1. (2) 𝑃(𝐺𝑖\𝑍𝑘) is the probability of the 𝑖𝑡ℎ gene 

over the 𝑘𝑡ℎ latentclass and  ∀𝑧𝑘;  ∑ 𝑃(𝐺𝑖\𝑍𝑘)𝑛
𝑖=1 = 1 . (3) 𝑃(𝐶𝑗\𝑍𝑘) is the 

probability of the 𝑗𝑡ℎ CC over the 𝑘𝑡ℎ latentclass and ∀𝑧𝑘;  ∑ 𝑃(𝐶𝑗\𝑍𝑘)𝑚
𝑗=1 =

1.Based on these definition and assumptions we obtain the co-occurrence of the 

gene-compound observed pair(𝑔𝑖, 𝑐𝑗)considering latentclass𝑧𝑘as follows:  

𝑃(𝑔𝑖, 𝑐𝑗) = 𝑃(𝑐𝑗)𝑃(𝑔𝑖\𝑐𝑗) 

Where  

𝑃(𝑔𝑖\𝑐𝑗) =  ∑ 𝑧𝑘

𝑙

𝑘=1

𝑃(𝑔𝑖\𝑧𝑘)𝑃(𝑧𝑘\𝑐𝑗) 

Applying Bayes’ rule, the joint co-occurrence probability function can be written 

as  

𝑃(𝑔𝑖, 𝑐𝑗) = ∑ 𝑧𝑘

𝑙

𝑘=1

𝑃(𝑔𝑖\𝑧𝑘)𝑃(𝑐𝑗\𝑧𝑘)𝑃(𝑧𝑘) 

So as to estimate the parameters of the model, we need to maximize the total 

likelihood of the observations:  

L(G,C) = ∑ ∑ #(𝑔𝑖, 𝑐𝑗)𝑙𝑜𝑔𝑃(𝑔𝑖, 𝑐𝑗)𝑚
𝑗=1

𝑛
𝑖=1  

The widely used method for estimating the maximum likelihood parameters of 

probabilistic model is the Expectation- Maximization (EM) algorithm (Dempster 

et al., 1977). The EM algorithm starts with a random set of initial parameter 

values and iterates both the expectation step (E-step) and maximization step (M-
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step) alternatively until a certain convergence criteria is satisfied. The E and M-

step for the total likelihood can be given as follows:   

E-step: 

𝑃(𝑧𝑘\𝑔𝑖, 𝑐𝑗) =  
𝑃(𝑔𝑖\𝑧𝑘)𝑃(𝑐𝑗\𝑧𝑘)𝑃(𝑧𝑘)

∑ 𝑃(𝑔𝑖\𝑧𝑘)𝑃(𝑐𝑗\𝑧𝑘)𝑃(𝑧𝑘)𝑙
𝑘=1

 

M-step:  

𝑃(𝑧𝑘) =  
∑ ∑ #(𝑔𝑖, 𝑐𝑗)𝑃(𝑧𝑘\𝑔𝑖, 𝑐𝑗)𝑚

𝑗=1
𝑛
𝑖=1

∑ ∑ ∑ #(𝑔𝑖, 𝑐𝑗)𝑃(𝑧𝑘\𝑔𝑖, 𝑐𝑗)𝑙
𝑘=1

𝑚
𝑗=1

𝑛
𝑖=1

 

𝑃(𝑔𝑖\𝑧𝑘) =  
∑ #(𝑔𝑖, 𝑐𝑗)𝑃(𝑧𝑘\𝑔𝑖 , 𝑐𝑗)𝑚

𝑗=1

∑ ∑ #(𝑔𝑖, 𝑐𝑗)𝑃(𝑧𝑘\𝑔𝑖, 𝑐𝑗)𝑚
𝑗=1

𝑛
𝑖=1

 

𝑃(𝑐𝑗\𝑧𝑘) =  
∑ #(𝑔𝑖, 𝑐𝑗)𝑃(𝑧𝑘\𝑔𝑖 , 𝑐𝑗)𝑛

𝑖=1

∑ ∑ #(𝑔𝑖, 𝑐𝑗)𝑃(𝑧𝑘\𝑔𝑖, 𝑐𝑗)𝑚
𝑗=1

𝑛
𝑖=1

 

 

2.4  Number of Latent Class Selection Methods  

Appropriate number of latent class selection for pLVM is an important task before 

the application of pLVM in data matrix since insufficient number of latent classes 

or topics is too coarse to recognize accurate clusters. Conversely, excessive 

number of latent classes could make the model more complex, drawing 

conclusions (Zhao et al., 2014). In our study, we have used a set of very popular 

methods for choosing optimum number of latent class. The number of latent 

classes which suggested by the maximum number of methods considered as the 

desired number of latent classes for the data matrix. The methods like Kaiser-

Guttman rule, Parallel Analysis, Scree Test Optimal Coordinate, Scree Test 

Acceleration Factor:(Guttman, 1954; Kaiser, 1960; Horn, 1965; Montanelli and 

Humphrey, 1976; Cattell, 1966) are used in this study all are based on principal 

components eigen values of gene-compound correlation matrix. 
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2.5  Identification of Up-regulatory and Down-regulatory Gene-CCs 

       Interactions  

As we have mentioned earlier that clustering genes as well as CCs is very 

important issue in toxicogenomic studies. There are several studies in the 

literature used different clustering methods for this purpose (Hasan et al., 2019b, 

Hasan et al., 2018). However, these methods is not suitable for the identification 

of significant up-regulatory and down-regulatory gene-CCs interactions. This 

problem can be overcome using the logistic moving range chart (LMRC) (Hasan 

et al., 2019a). There are central line (CL) which represents the average value of 

the quality characteristics corresponding to in-control state, an upper control limit 

(UCL) and a lower control limit (LCL) in the LMRC. If the probability of fold 

change value of a gene corresponding to a compound or gene-compound 

interaction 𝑃(𝐺𝑖, 𝐶𝑗) plots outside the UCL or LCL we consider that interaction as 

significant up-regulatory and down-regulatory interaction. Where up-regulatory 

and down-regulatorygene-CCs interactions indicates a CC which influence a gene 

to be up-regulated and down-regulated respectively.   

 

3.  Results and Discussions  

3.1  Number of Latent Class Selection 

We have applied the methods described in section 2.4 for selection of optimum 

number latent class in the dataset. The Kaiser-Guttman rule, Parallel Analysis, 

Scree Test Optimal Coordinate and Scree Test Acceleration Factor suggest that 

there are 9, 6, 6 and 1 latent classes in the dataset respectively (Figure 1).  For this 

study, we assume that there are 6 latent classes or clusters in the dataset as it is 

suggested by maximum number methods.  
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Figure 1: Kaiser-Guttman, Parallel Analysis, Scree Test Optimal Coordinate and 

Scree Test Acceleration Factor rule for optimum number of latent class selection 

based on eigen values of correlation matrix of the dataset. 

 

3.2  Chemical Compound (CC) or Treatment Conditions Clustering  

In the liver, detoxification process is always continuing and glutathione plays the 

major role in this process. It conjugates target toxic compounds and exports the 

conjugated compounds into bile ducts. To analyze drug induced glutathione 

depletion from TGP dataset, we find out the pattern of drugs along with their dose 

levels at 24 hour time point. A compound/drug give different probability over the 

latent classes and it will remain in that latent class where it gives maximum 

probability.  For example, according to Figure 2 all dose levels of acetaminophen, 

medium and high dose level of nitrofurazone and only high dose level of 
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methapyrilene are showed maximum probability in the latent class five. Therefore, 

they remain in cluster five. In the same way, all the CCs along with their dose 

levels were grouped that has been presented in Table 1. The cluster five (latent 

class five) is a cluster of highly toxic compounds because all the compounds 

belonging to this cluster are toxic compounds with their dose levels. Nyström-

Perssonet al., (2013) also found the CCs in cluster five are glutathione depleting 

compounds.  

 

Figure 2: CCs clustering based onlatent classes or plot of 𝑃(𝐶𝑗\𝑍𝑘).  In the plot 

the darker block represent the maximum probability and a CC along with its dose 

level will remain in that class where it has the maximum probability compare to 

the other classes. 

 

 



 

 

 

 

 

 

 

 

108                                        International Journal of Statistical Sciences, Vol. 18, 2019 

 

Table 1: Cluster membership of different CCs with their dose level.  

Class:1 Class:2 Class:3 Class:4 Class:5 Class:6 

isoniazid_Low, 

hexachlorobenze

ne_Low, 

hexachlorobenze

ne_Medium,   

hexachlorobenze

ne_High 

 

 

penicillamine_ 

High, 

nitrofurazone_ 

Low, 

penicillamine_

Medium, 

gentamicin_ 

Low, 

penicillamine_ 

Low, 

gentamicin_ 

High, 

perhexiline_ 

High 

glibenclamide

_High, 

glibenclamide

_Low, 

glibenclamide

_Medium, 

isoniazid_Med

ium, 

isoniazid_High 

 

 

 

 

gentamicin_ 

Medium,me

thapyrilene_M

edium,methap

yrilene_ 

Low, 

erythromycin_ 

Low, 

erythromycin_ 

High,  

erythromycin_ 

Medium 

acetaminophen

_Low,   

methapyrilene

_High, 

nitrofurazone_ 

Medium,  

acetaminophen

_Medium,   

nitrofurazone_ 

High,   

acetaminophen

_High 

perhexiline_ 

Low, 

perhexiline_ 

Medium 

 

 

 

3.3  Gene Clustering 

In our study, the toxic effect of considered CCs including three common 

glutathione depleting compounds acetaminophen, methapyrileneand nitrofurazone 

under different conditions (dose level and 24 hourtime point) were studied over 

the 42 genes/probes which belong to the glutathione metabolism pathway. The 

clusters of these genes are given in Figure 3 which is generated by pLVM. Cluster 

five contains the genes Gsta5, Gss, Mgst2, 1371942_at, Gclc, Gstp1, Gsr, Gclc 

and G6pdwhich have showed same pattern in response to toxic compounds (Table 

2, cluster 5). It has also proved by (Nyström-Persson et al., 2013) that the top four 

ranked probes are Mgst2 (microsomal glutathione S-transferase 2), G6pd 

(glucose-6-phosphate dehydrogenase), Gsr (glutathione reductase) and Gclc 

(glutamate–cysteine ligase) that are influenced by the toxic CCs in (cluster 5 

(Table 1)). Gclc is known to accelerate glutathione synthesis, and Gsr and G6pd 

are involved in the conversion of glutathione from the oxidized form to the 

reduced one. Mgst2 is glutathione-S-transferase, which is the main enzyme for 

detoxification of toxic compounds by the conjugation reaction. 
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Figure 3: Genes/probs clustering based on hidden class or plot of 𝑃(𝐺𝑗\𝑍𝑘). In 

the plot the darker block represent the maximum probability and a gene/probswill 

remain in that class where it has the maximum probability compare to the other 

classes. 

 

Table 2: Cluster membership of gene/prob 

Class:1 Class:2 Class:3 Class:4 Class:5 Class:6 

1396208_at, 

LOC100359539, 

1391529_at, 

LOC100359539 

 

 

 

1369926_at,  

1368354_at, 

1367612_at, 

Idh2,  

1367576_at, 

Oplah, 

Gstm7, 

1371942_at, 

1368307_at,  

1392541_at, 

1370952_at, 

1386871_at,  

1367774_at,  

Odc1,  

1368374_a_at 

LOC100912604, 

1370813_at 

1368409_at,  

1376579_at,    

1386938_at, 

Idh1,  

1398107_at, 

1388085_at 

 

 

Gsta5,  Gss,  

Mgst2,Gstp1,  

Gsr, Gclc, 

Gclc,     

G6pd, 

1374070_at 

1388523_at, 

1396468_at, 

1398378_at,  

1394886_at, 

1387729_at,  

Gstm3 

 

 

 



 

 

 

 

 

 

 

 

110                                        International Journal of Statistical Sciences, Vol. 18, 2019 

 

3.4  Identification of Up-regulatory and Down-regulatory Gene-CCs 

       Interactions  

In this section we have schemed the likelihood 𝑃(𝐺𝑖 , 𝐶𝑗)  of the gene-CCs 

interactions of CCs along with their dose levels and 42 glutathione metabolism 

pathway genes using the LMRC for identification of significant gene-compound 

interactions. The top 20 significant up-regulatory and top 20 significant down-

regulatory gene-CCs interactions are presented in Table 3 and Table 4 

respectively. In Table 3 the gene-CCs interactions which produce larger likelihood 

(𝑃(𝐺𝑖, 𝐶𝑗) > 𝑈𝐶𝐿)are the toxic CCs and up-regulated biomarker genes. In Table 4 

the gene-CCs interactions which produce smaller likelihood (𝑃(𝐺𝑖 , 𝐶𝑗) < 𝐿𝐶𝐿) 

are the toxic CCs and down-regulated biomarker genes.   

Table 3: Top 20 up-regulatory CCs-gene relationships. 

CCs-Gene  Likelihood CCs-Gene  Likelihood 

nitrofurazone_High:1374070_at  0.00176589 methapyrilene_Medium:1388085_at  0.00139783 

nitrofurazone_High:Gstm3  0.00174019 isoniazid_Medium:Gstm3  0.00136946 

acetaminophen_High:1374070_at 0.00161524 acetaminophen_Medium:G6pd 0.00136647 

perhexiline_Medium:Gstm3  0.00149566 erythromycin_Low:1388085_at  0.00134732 

acetaminophen_Medium:1374070_at 0.00148971 nitrofurazone_High:Gstp1 0.00132410 

erythromycin_Medium:1388085_at  0.00148157 nitrofurazone_Medium:G6pd  0.00131778 

erythromycin_High:1388085_at 0.00144884 methapyrilene_High:1388085_at 0.00131558 

methapyrilene_High:Gstm3  0.00139796 acetaminophen_High:G6pd  0.00131529 

acetaminophen_High:Gsr 0.00130968 acetaminophen_High:Gclc 0.00130383 

acetaminophen_High:Gstp1 0.00130360 acetaminophen_High:Gclc 0.00128999 
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Table 4: Top 20 down-regulatory CCs-gene relationships 

CCs-Gene  Likelihood CCs-Gene  Likelihood 

isoniazid_High:LOC100359539  1.0174e-05 hexachlorobenzene_Low:1388085_at  2.3627e-04                       

isoniazid_Medium:LOC100359539 2.1876e-05  acetaminophen_High:1387729_at  2.3628e-04 

isoniazid_High:LOC100359539  2.6849e-05  acetaminophen_High:1396208_at  2.5267e-04  

isoniazid_Medium:LOC100359539  3.7102e-05 perhexiline_High:G6pd  2.6009e-04 

hexachlorobenzene_Medium:1388085_at  1.2631e-04  isoniazid_High:1371942_at  2.6400-04  

perhexiline_High:LOC100359539  1.5065e-04  perhexiline_High:1391529_at  2.6746e-04  

hexachlorobenzene_High:1374070_at  2.0341e-04  perhexiline_Medium:LOC100359539  2.7331e-04  

perhexiline_High:LOC100359539  2.2569e-04 perhexiline_High:1396208_at   2.7414e-04  

 isoniazid_High:G6pd 3.4345e-04 acetaminophen_Low:1388085_at  3.3456e-04  

nitrofurazone_High:Oplah 3.5856e-04  nitrofurazone_High:1396208_at  3.5602e-04  

 

4.  Conclusion 

Correlated genes and compounds clustering simultaneously to the biological 

processes is one of the main objectives of toxicogenomic studies (Hasan et al., 

2018). The Probabilistic Latent Variable Model (pLVM) and latent class selection 

strategies for the gene-CCdataset can successfully cluster genes as well as CCs. 

The CCs having same pattern of toxic effect over genes were grouped in the same 

cluster and the genes which have the same pattern of response to the CCs were 

belongs to the same cluster. Nonetheless, the pLVM cannot separate the 

significant up-regulatory and down-regulatory gene-compound interactions from 

the equal-regulatory interactions. But identification of significant up-regulatory 

and down-regulatory interactions between genes and chemical compounds or 

drugs are the cornerstone in toxicogenomic studies as well as in drug discovery 

and development (Hasan et al., 2019a; Zhu et al., 2005). Therefore, logistic 

moving range chart (LMRC) (Hasan et al., 2019a) were used for the identification 

of significant up-regulatory and down-regulatory gene-compound 

interaction/relationships. The results that have been got were validated from 

biological viewpoint. Thus, pLVM, number of latent class selection methods and 

LMRC can give information of toxicity study for toxicogenomic study and drug 

development. The limitation of the method in analyzing toxicogenomic data is 

that, it consider the equal number of clusters for the CCs and genes. However, in 
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practical there may not the same number of clusters for CCs and genes. There 

should be done more research in this regard.    
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