
 

 

 

 

 

 

International Journal of Statistical Sciences                                               ISSN 1683-5603 

Vol. 20(1), 2020, pp 61-78 

© 2020 Dept. of Statistics, Univ. of Rajshahi, Bangladesh 

 

 

Robust QTL Analysis Based on Robust Estimation of 

Bivariate Normal Distribution with Backcross Population 
 

Md. Jahangir Alam
1*

, Md. Ripter Hossain
1
, S. M. Shahinul Islam

2 

and Md. Nurul Haque Mollah
1*

 
 

1
Bioinformatics Laboratory, Department of Statistics,  

University of Rajshahi, Rajshahi-6205, Bangladesh 
 

2
Institute of Biological Science, University of Rajshahi,  

Rajshahi-6205, Bangladesh 
 

*
Correspondence should be addressed to Md. Jahangir Alam and  

Md. Nurul Haque Mollah 

(jahangir_statru63@yahoo.com) and (mollah.stat.bio@ru.ac.bd) 

 

[Received Jan. 8, 2020; Revised February 10, 2020; Accepted March 3, 2020] 

 
 

Abstract 
 

Simple interval mapping (SIM) is one of the most popular approaches for genome-wide 

single quantitative trait locus (QTL) analysis. Maximum likelihood (ML) and least 

squares (LS) regressions are widely used methods for SIM. However, these approaches 

are very complex and time-consuming in terms of statistical computation. In this study, 

we have introduced a new approach for single-trait QTL analysis using the properties of 

bivariate normal distribution (BND) with the backcross population. In this approach, 

statistical calculations are very straight forward because the calculations depend on only 

the sample means, sample variances and sample covariances. In spite of computational 

simplicity, our proposed classical method is very sensitive to phenotypic outliers like 

other existing methods and it provides misleading results in presence of phenotypic 

contaminations. To overcome this problem, we have developed a new robust approach of 

SIM for single-trait QTL analysis by robustifying our proposed classical BND based SIM 

approach using the minimum –divergence method. The proposed robust method reduces 

to the proposed classical SIM approach when the tuning parameter β = 0. Simulation 

study and real data analysis show that our proposed classical method shows almost the 

same performance as the existing classical methods of SIM in all cases and our proposed 

robust approach outperforms over the classical SIM approaches in presence of outliers. 
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Also, in absence of outliers, the proposed robust approach shows almost the same 

performance as the classical SIM approaches. 

Keywords: Simple interval mapping, maximum likelihood, -likelihood function, 

bivariate normal distribution, LOD statistic. [ 

AMS Classification: 62F35. 
 

 

1.  Introduction 

Recent advancements in biotechnology, particularly in molecular marker 

technology, have expedited the availability of large fine-scaled genetic markers 

data which facilitate the genome-wide quantitative trait locus (QTL) analysis in 

the genetic study for identifying the important genes which control specific 

quantitative trait. The idea of using two flanking markers bracketing a region for 

testing QTLs was first proposed by Thoday (1961). Lander and Botstein (1989) 

proposed a much improved approach based on the maximum likelihood (ML) 

estimation method, which uses the linkage relationship between the flanking 

markers and a QTL for identifying important QTLs. This method is called simple 

interval mapping (SIM) for QTL mapping. Similar to Lander and Botstein (1989), 

a linear regression based SIM approach was proposed byHaley and Knott (1992), 

which uses the least squares(LS) method for estimation of the model parameters. 

This LS regression-based SIM is also well known as HK regression-based interval 

mapping to the biologists. Kao (2000)investigated the differences between ML 

and (LS) based simple interval mapping for QTL analysis analytically and 

numerically.Liu (1997),Wu et al. (2007),Weller (2009),Rifkin (2012),Xu 

(2013),Chen (2016) and Caballero (2020) discussed different methods for single-

trait QTL analysis in their textbooks. 

The existing SIM approaches based on the ML method(Lander and Botstein, 

1989) and the LS method (Haley and Knott, 1992) are the two most popular and 

widely used methods for single-trait QTL analysis. Substantial work has been 

done in single-trait QTL analysis using ML and LS based SIM methods 

(Boopathi, 2020; Broman, 2001; Broman and Sen, 2009; Churchill and Doerge, 

1994; Doerge, 2002; Huang et al., 2020; Jansen, 1993; Knott, 2005; Kwak et al., 

2014; Moser et al., 1998; Ngwako, 2008; Nobari et al., 2012; Sharma et al., 2019; 

Singh et al., 2018). The main limitation of ML based SIM is that its calculations 
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are very complex and it is very time-consuming because it uses the expectation-

maximization (EM) algorithm. Although LS based SIM takes less time than ML 

based SIM, its computations are also complex because parameter estimation 

depends on the least squares method, and the calculation of test statistic needs 

calculation of residuals and residual variance. In this study, we have developed a 

new approach of single-trait QTL analysis using the properties of bivariate normal 

distribution (BND) with the backcross (BC) population. In this approach, the 

parameter estimation and calculation of test statistic are very straight forward 

because the calculations depend only on the sample means, sample variances and 

sample covariances of phenotype and the conditional probability of QTL genotype 

given the flanking marker genotypes. Although our proposed BND based SIM are 

very useful methods for QTL analysis, it is very sensitive to phenotypic 

contaminations and provides misleading results when the phenotypic data are 

contaminated by outliers. 

To overcome this problem of phenotypic contaminations, we have also developed 

a new robust approach of SIM for single-trait QTL analysis with BC population 

by robustifying our proposed classical BND based SIM using minimum –

divergence method. We have performed a simulation study to investigate the 

performance of the proposed methods in comparison with the existing methods of 

SIM for QTL analysis with BC population. Although we have developed our 

proposed methods for BC population, these methods can easily be extended for 

other populations, such as double haploid (DH) and intercross (F2) population, 

with some simple modification. 

 

2.  Materials and Methodology 

2.1  Regression based SIM for single-trait QTL analysis using the 

       properties of MND (Proposed1) 

Let us consider no epistasis between two QTLs, no interference in crossing over, 

and only one QTL in the testing interval for a BC population. Then for testing a 

QTL within a marker interval, the linear regression model for BC population is as 

follows: 

 𝑦𝑗 = 𝛼 + 𝛾𝑥𝑗|𝑖 + 𝜀𝑗, 𝑖 = 1, 2 and  𝑗 = 1, 2, … , 𝑛       (1) 
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where 𝑦𝑗 is the phenotypic value of the j
th

 individual, 𝛼 is the general mean effect, 

𝛾is the QTL effect, 𝑥𝑗|𝑖 = 𝑝𝑗|𝑖 = 𝑥𝑗  is the conditional probability of the putative 

QTL genotypes given the flanking marker genotypes for the j
th

 individual (see 

Table 1) and εj~NID(0, σ
2
) is a random error. 

Let the flanking markers of the QTL testing interval are denoted by ML (left 

marker)with alleles ML and mL,   and MR (right marker) with alleles MRandmR. 

Suppose that the locus of the unobserved putative QTL located within the testing 

interval bracketed by the flanking marker ML and MR is denoted by Q with alleles 

Q and q.  The conditional probabilities for QTL genotypes QQ and Qq given the 

flanking marker genotypes are denoted by pj|1 and pj|2, respectively. The 

conditional probabilities pj|1 and pj|2 are shown in Table 1 for the BC population. 

The recombination fraction between the two markers is denoted by r. The 

possibility of the event of double recombination within the interval of two 

flanking markers is ignored. 
 

Table 1: Conditional Probabilities of a putative QTL genotype given the 

flanking marker genotypes for a BC population 

Marker Genotypes Expected Frequency 
QTL Genotypes 

QQ(pj|1) Qq(pj|2) 

MLMR/MLMR (1 r)/2 1 0 

MLMR/MLmR r/2 (1 p
*
) p 

MLMR/mLMR r/2 p (1 p) 

MLMR/mLnR (1 r)/2 0 1 
*
p = rMLQ

/rMLMR
, where rMLQ

 is the recombination fraction between the left 

marker ML  and the putative QTL Q, and rMLMR
 is the recombination fraction 

between two flanking markers ML and MR. 
 

We want to test the null hypothesis 𝐻0: 𝛾 = 0 (i.e., there is no QTL at a given 

position within a marker interval) against 𝐻1: 𝐻0 is not true.Under the null 

hypothesis (𝐻0), the model (1) reduces to the following model 

 𝑦𝑗 = 𝛼 + 𝜀𝑗,  𝑗 = 1, 2, … , 𝑛       (2) 
 

In order to estimate the model parameters and the variance of the random error, let 

us consider that 𝒁 = (𝑌, 𝑋)  follows a bivariate normal distribution 
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𝑁 ( 𝝁𝒁
(2×1)

, 𝜮𝒁
(2×2)

) with mean vector 𝝁𝒁and covariance matrix𝜮𝒁, where Y and X 

are introduced in (1).Then the probability density function for Z can be 

written as 

 𝑓(𝒁) =
1

(2𝜋)|𝜮𝒁|1/2
exp [−

1

2
(𝒁 − 𝝁𝒁)𝑇𝜮𝒁

−1(𝒁 − 𝝁𝒁)]       (3) 

 

We can partition the mean vector 𝝁𝒁  as 𝝁𝒁 = [𝜇𝑌 𝜇𝑋]𝑻  and the covariance 

matrix 𝜮𝒁 as 𝜮𝒁 = [
𝜎𝑌

2 𝜎𝑋𝑌

𝜎𝑌𝑋 𝜎𝑋
2 ] , where 𝜇𝑌 = population mean of Y , 𝜇𝑋 =

population mean of X , 𝜎𝑋
2 = 𝐸[(𝑋 − 𝜇𝑋)2] = population variance of X , 𝜎𝑌

2 =

𝐸[(𝑌 − 𝜇𝑌)2] = population variance of and 𝜎𝑋𝑌 =  𝜎𝑌𝑋 =  𝐸[(𝑋 − 𝜇𝑋)(𝑌 −

𝜇𝑌)] = population covariance between X and Y. 

 

Then the conditional mean of Y given X is obtained as 

 𝐸(𝑌|𝑋 = 𝑥) = 𝜇𝑌 + 𝜎𝑌𝑋𝜎𝑋
−2(𝑋 − 𝜇𝑋)        (4) 

Equation (4) can be expressed as 

 (𝑌|𝑋 = 𝑥) = 𝜇𝑌 + 𝜎𝑌𝑋𝜎𝑋
−2𝑋 − 𝜎𝑌𝑋𝜎𝑋

−2𝜇𝑋  

   = (𝜇𝑌 − 𝜎𝑌𝑋𝜎𝑋
−2𝜇𝑋) + (𝜎𝑌𝑋𝜎𝑋

−2)𝑋  

   = 𝛼 + 𝛾𝑋        (5) 

which is known as simple linear regression surface of Y on X, where 𝛼 = (𝜇𝑌 −

𝜎𝑌𝑋𝜎𝑋
−2𝜇𝑋) is the general mean effect and the (m×1) vector𝛾 = (𝜎𝑌𝑋𝜎𝑋

−2) is called 

the regression coefficient. For BC population 𝛾 is the additive QTL effects. 

Using (4), the prediction error can be written as 

 𝜀 = 𝑌 − 𝐸(𝑌|𝑋) = 𝑌 − 𝜇𝑌 − 𝜎𝑌𝑋𝜎𝑋
−2(𝑋 − 𝜇𝑋)        (6) 
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Now, the variance of the prediction error is 

 𝜎2 = 𝑉(𝜀) =  𝐸[{𝜀 − 𝐸(𝜀)}2] = 𝐸[𝜀2], since 𝐸(𝜀) = 0        (7) 

Using (6) in (7), we can write 

 𝜎2 = 𝐸[{𝑌 − 𝜇𝑌 − 𝜎𝑌𝑋𝜎𝑋
−2(𝑋 − 𝜇𝑋)}2]  

 
= 𝐸[(𝑌 − 𝜇𝑌)2 − 2(𝑌 − 𝜇𝑌){𝜎𝑌𝑋𝜎𝑋

−2(𝑋 − 𝜇𝑋)}

+ {𝜎𝑌𝑋𝜎𝑋
−2(𝑋 − 𝜇𝑋)}2]  

 
= 𝐸[(𝑌 − 𝜇𝑌)2] − 2𝜎𝑌𝑋𝜎𝑋

−2𝐸[(𝑌 − 𝜇𝑌)(𝑋 − 𝜇𝑋)]

+ 𝜎𝑌𝑋
2 𝜎𝑋

−4𝐸[(𝑋 − 𝜇𝑋)2]  

 = 𝜎𝑌
2 − 2𝜎𝑌𝑋𝜎𝑋

−2𝜎𝑌𝑋 + 𝜎𝑌𝑋
2 𝜎𝑋

−4𝜎𝑋
2  

 = 𝜎𝑌
2 − 2𝜎𝑌𝑋

2 𝜎𝑋
−2 + 𝜎𝑌𝑋

2 𝜎𝑋
−2  

 = 𝜎𝑌
2 − 𝜎𝑌𝑋

2 𝜎𝑋
−2 (8) 

Because 𝝁𝒁and 𝜮𝒁are typically unknown, they must be estimated from a random 

sample in order to construct the multivariate linear predictor and determine 

expected prediction errors. 

Based on a random sample of size n, the maximum likelihood estimator of the 

𝝁𝒁and 𝜮𝒁 are given by 

 �̂�𝒁 = [
�̂�𝑌

�̂�𝑋

] = [
�̅�

�̅�

] and�̂�𝒁 = [
�̂�𝑌

2 �̂�𝒀𝑋

�̂�𝑋𝒀 �̂�𝑋
2

] = (
𝑛 − 1

𝑛
) [

𝑆𝑌
2 𝑆𝑌𝑋

𝑆𝑋𝑌 𝑆𝑋
2

]        (9) 

where �̅� =
1

𝑛
∑ 𝑥𝑗

𝑛
𝑗=1 , �̅� =

1

𝑛
∑ 𝑦𝑗

𝑛
𝑗=1 , 𝑆𝑌

2 =
1

𝑛−1
∑ (𝑦𝑗 − �̅�)

2𝑛
𝑗=1 , 𝑆𝑋𝑌 = 𝑆𝑌𝑋 =

1

𝑛−1
∑ (𝑦𝑗 − �̅�)(𝑥𝑗 − �̅�)𝑛

𝑗=1 and𝑆𝑋
2 =

1

𝑛−1
∑ (𝑥𝑗 − �̅�)

2𝑛
𝑗=1 . 

Hence, based on a random sample of size n, we can get the maximum likelihood 

estimators of the regression parameters 𝛼 and 𝛾, and the error variance 𝜎2. 
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Using (9) into (5), we can write 

 �̂� = (�̂�𝑌 − �̂�𝑌𝑋�̂�𝑋
−2�̂�𝑋) = �̅� − 𝑆𝑌𝑋𝑆𝑋

−2�̅�      (10) 

and 

 𝛾 = (�̂�𝑌𝑋�̂�𝑋
−2) = 𝑆𝑌𝑋S𝑋

−2      (11) 

Therefore, using (9) in (4), the maximum likelihood estimator of the regression 

function is 

 �̂� = �̂� + 𝛾𝑋 = �̅� − 𝑆𝑌𝑋𝑆𝑋
−2�̅� + 𝑆𝑌𝑋𝑆𝑋

−2𝑋 = �̅� + 𝑆𝑌𝑋𝑆𝑋
−2(𝑋 − �̅�)      (12) 

Based on a random sample of size n, using (9) in (8), the maximum likelihood 

estimators of 𝜎2 under the full model and the reduced model are, respectively, 

 �̂�2 = �̂�𝑌
2 − �̂�𝑌𝑋

2 �̂�𝑋
−2 = (

𝑛 − 1

𝑛
) (𝑆𝑌

2 − 𝑆𝑌𝑋
2 𝑆𝑋

−2)      (13) 

and 

 �̂�0
2 = �̂�𝑌

2 = (
𝑛 − 1

𝑛
) 𝑆𝑌

2      (14) 

Let 𝐿1(𝛼, 𝛾, 𝜎2) is the likelihood function under the full model (1) and 𝐿0(𝛼, 𝜎2) 

is the likelihood function under the reduced model (2). To test 𝐻0against𝐻1, the 

likelihood ratio test (LRT) statistic is defined as 

 LRT = −2 ln [
max
𝛼,𝜎2

𝐿0(𝛼, 𝜎2)

max
𝛼,𝛾,𝜎2

𝐿1(𝛼, 𝛾, 𝜎2)
]  

 = −2 ln [
𝐿0(�̂�0, �̂�0

2)

𝐿1(�̂�, 𝛾, �̂�2)
] = −𝑛 ln (

�̂�2

�̂�0
2) (15) 
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where �̂�, 𝛾 and �̂�2 are the maximum likelihood (ML) estimates of the parameters 

𝛼, 𝛾 and 𝜎2 under the full model (1), and �̂�0 and �̂�0
2 are the ML estimates of the 

parameters 𝛼 and 𝜎2 under the reduced model (i.e., under 𝐻0). 

Under the null hypothesis (H0), the LRT statistic in (15) is expected to have an 

approximate chi-square distribution with 1 degree of freedom for a given QTL 

position in the genome. However, the threshold value to reject the null hypothesis 

(𝐻0) cannot be simply chosen from the 𝜒2 distribution because of the violation of 

regularity conditions of the asymptotic theory under H0.An alternative way is to 

use the log of odds (LOD) score (Lander and Botstein, 1989; Ott, 1999; 

Terwilliger and Ott, 1994; Wu et al., 2007; Xu, 2013) as a test statistic to test the 

null hypothesis of no QTL (H0). The LOD score is the transformation of the LRT 

statistic, defined as 

 LOD =
LRT

2× log(10)
=

LRT

4.605
= 0.217 LRT      (16) 

According toLander and Botstein (1989), the typical threshold of LOD score 

should be between 2 and 3 to ensure a 5% overall false positive error for 

identifying a QTL. Terwilliger and Ott (1994), Ott (1999); Wu et al. (2007), and 

Xu (2013)suggested a value of LOD = 3 as the critical threshold for declaring the 

existence of QTL. Thus, the LOD > 3 can be used as a criterion to declare a 

significant QTL. 

2.2  Robust SIM for single-trait QTL analysis using robust bivariate 

       normal distribution (Proposed2) 

All the approaches discussed in previous sections are very sensitive to phenotypic 

outliers and produce misleading results in presence of outliers. So, we need some 

robust approach that produces similar results in absence of outliers and performs 

better in presence of outliers being less sensitive to outliers. We observe that the 

estimates in (9) – (15) are very sensitive to outliers and give misleading results in 

presence of outliers. In this section, we have discussed the robustification of the 

estimates in (9) – (15) using β–divergence method (Mihoko and Eguchi, 2002; 

Mollah et al., 2007) to obtain the robust estimates of model parameters and the 

robust test statistics (LRT and LOD). From (9) – (15) we observe that if we can 

robustify the sample means, sample variances and sample covariance, then we can 
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obtain the robust estimates of the model parameters and the test statistics (LRT 

and LOD). 

According to (Mihoko and Eguchi, 2002; Mollah et al., 2007), the β-divergence 

between two probability density functions 𝑝(𝒛) and 𝑞(𝒛) is defined by 

 

𝐷𝛽(𝑝, 𝑞) = ∫ [
1

𝛽
{𝑝𝛽(𝑧) − 𝑞𝛽(𝒛)}𝑝(𝒛)

−
1

𝛽 + 1
{𝑝𝛽+1(𝒛) − 𝑞𝛽+1(𝒛)}] 𝑑𝒛,  𝑓𝑜𝑟 𝛽 > 0 

 
 

(17)   

which is non-negative, that is 𝐷𝛽(𝑝, 𝑞) ≥ 0, equality holds iff 𝑝 = 𝑞. 

The minimum 𝛽 -divergence estimators of the parameters 𝜽 = (𝝁𝒁, 𝜮𝒁)  can be 

obtained by the iterative solution of the following equations: 

 𝝁𝒛,𝑡+1 =
∑ 𝑤𝛽(𝒛𝑗|𝜽𝑡)𝒛𝑗

𝑛
𝑗=1

∑ 𝑤𝛽(𝒛𝑗|𝜽𝑡)𝑛
𝑗=1

  (18) 

and 

 𝜮𝒁,𝑡+1 = (1 + 𝛽)
∑ 𝑤𝛽(𝒛𝑗|𝜽𝑡)(𝒛𝑗 − 𝝁𝒁,𝑡)(𝒛𝑗 − 𝝁𝒁,𝑡)𝑇𝑛

𝑗=1

∑ 𝑤𝛽(𝒛𝑗|𝜽𝑡)𝑛
𝑗=1

  (19) 

where 𝑤𝛽(𝒛𝑗|𝜽𝑡), 𝑗 = 1, 2, … , 𝑛, is called the 𝛽-weight function and defined as 

𝑤𝛽(𝒛𝑗|𝜽𝑡) = exp [−
𝛽

2
(𝒛𝑗 − 𝝁𝒁,𝑡)𝑇𝜮𝒁,𝑡

−1(𝒛𝑗 − 𝝁𝒁,𝑡)]. 

If β→0, then (18) and (19) reduces to the classical non-iterative solution. 

 

Let the robust estimates (i.e., 𝛽-estimates) of 𝝁𝒁 and 𝜮𝒁 are denote by �̂�𝒁(𝛽)and 

�̂�𝒁(𝛽). Then we can write  

 �̂�𝒁(𝛽) = [

�̂�𝑌(𝛽)

�̂�𝑋(𝛽)

]and �̂�𝒁(𝛽) = [
�̂�𝑌(𝛽)

2 �̂�𝑌𝑋(𝛽)

�̂�𝑋𝑌(𝛽) �̂�𝑋(𝛽)
2

]  (20)   
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Then the robust estimates of the regression parameters can be written as 

 �̂�(𝛽) = (�̂�𝑌(𝛽) − �̂�𝑌𝑋(𝛽)�̂�𝑋(𝛽)
−2 �̂�𝑋(𝛽))  (21)   

and 

 𝛾(𝛽) = (�̂�𝑌𝑋(𝛽)�̂�𝑋(𝛽)
−2 )  (22)   

Now, the robust estimates of 𝜎2 under the full model and the reduced model are, 

respectively,  

 �̂�(𝛽)
2 = �̂�𝑌(𝛽)

2 − �̂�𝑌𝑋(𝛽)
2 �̂�𝑋(𝛽)

−2   (23)   

and 

 �̂�0(𝛽)
2 = �̂�𝑌(𝛽)

2   (24)   

Then we get the robust LRT statistic as follows: 

 LRT(β) = −𝑛 ln (
�̂�(β)

2

�̂�0(β)
2 )  (25)   

The modified LRT statistic has an approximate 𝜒2-distribution with 1 degree of 

freedom. Then the robust LOD statistic can be written as 

 LOD(β) =
LRT(𝛽)

2× log(10)
=

LRT(𝛽)

4.605
= 0.217 LRT(𝛽)  (26)   

We have developed the proposed method for BC population. However, methods 

for other mapping populations, such as F2 and double haploid (DH), are the simple 

extension of that for the BC population with some modifications. 
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3.  Result and Discussions 

3.1  Simulation Results 

To measure the performance of the proposed methods (Proposed1: Classical BND 

and Proposed2: Robust BND) in comparison of the maximum likelihood (ML) 

and least squares (LS) methods of SIM for QTL mapping with BC population, we 

have generated phenotypic and genotypic data with BC population using 

simulation technique. We have considered three unlinked QTL sacross ten 

chromosomes and 11 equally spaced markers in each of the ten chromosomes, 

where any two successive marker interval size is 5 cM. The true QTL positions 

are located on chromosomes 2, 3 and 5 at marker 5 (locus position 20 cM). The 

true values of the parameters in the model are assumed as 𝛼 = 0.5, 𝛾 = 0.8 and 

𝜎2 = 0.25. We have generated 300 trait values with heritability ℎ2 = 0.39 which 

means that 39% of the trait variation is controlled by QTL and the remaining 61% 

is subject to the environmental effects (random error). To investigate the 

robustness of the Proposed2 (robust BND) method in a comparison of the ML, LS 

and Proposed1 (classical BND) methods, we have contaminated 12% of the trait 

values (i.e., phenotypic values) in this dataset by outliers. To perform the 

simulation study we have used R/qtl software (Broman et al. (2003), homepage: 

http://www.rqtl.org/). 

Table 2 shows QTL positions (i.e., chromosome, marker and locus position) 

identified by the ML, LS, Proposed1 and Proposed2 methods in presence and 

absence of outliers. Figure 1(a) and Figure 1(b) are representing the scatter plots 

of 300 trait values in presence and absence of outliers, respectively. Then we 

computed LOD scores based on the ML, LS, Proposed1 and Proposed2 methods 

for both types of data sets (uncontaminated and contaminated).  Figure 1(c) and 

Figure 1(d) are showing the LOD scores profile plots for the uncontaminated and 

contaminated datasets, respectively. In the LOD scores profile plots, the dotted 

(red colour), two dash (green colour), dot dash (blue colour) and solid (black 

colour) lines represent the LOD scores at every 1cM  position in the chromosomes 

for the ML, LS, classical BND (Proposed1) and robust BND (Proposed2) method 

of SIM, respectively, with  β = 0.2. We have selected the best value of the tuning 

parameter β by cross-validation. 
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Table 2: QTL positions identified by each method in absence and absence of 

outliers 

Method True QTL position Identified QTL position 

In absence of outliers In presence of outliers 

ML On chromosomes 2, 3 

and 5 at marker 5 (locus 

position 20 cM) for each 

chromosome. 

On chromosomes 2, 3 

and 5 at marker 5 (locus 

position 20 cM) for each 

chromosome. 

ML method fails to identify 

any QTL on any 

chromosome. 

LS On chromosomes 2, 3 

and 5 at marker 5 (locus 

position 20 cM) for each 

chromosome. 

On chromosomes 2, 3 

and 5 at marker 5 (locus 

position 20 cM) for each 

chromosome. 

LS method fails to identify 

any QTL on any 

chromosome. 

Proposed1 

(Classical 

BND) 

On chromosomes 2, 3 

and 5 at marker 5 (locus 

position 20 cM) for each 

chromosome. 

On chromosomes 2, 3 

and 5 at marker 5 (locus 

position 20 cM) for each 

chromosome. 

(i) On chromosome 3 at 

marker 8 (locus position 

35 cM) 

(ii) On chromosome 5 at 

marker 5 (locus position 

20 cM) 

(iii) On chromosome 6 at 

marker 2 (locus position 

5 cM) 

(iv) On chromosome 8 at 

marker 3 (locus position 

10 cM) 

Proposed2 

(Robust  

BND) 

On chromosomes 2, 3 

and 5 at marker 5 (locus 

position 20 cM) for each 

chromosome. 

On chromosomes 2, 3 

and 5 at marker 5 (locus 

position 20 cM) for each 

chromosome. 

On chromosomes 2, 3 and 5 

at marker 5 (locus position 

20 cM) for each 

chromosome. 
 

From Table 2 and Figure 1 it is seen that the highest LOD score peak occurs at the 

true QTL position on the true chromosome 2, 3 and 5 at marker 5 (locus position 

20 cM) for all four methods for the uncontaminated dataset (Figure 1(c)). 

However, in presence of outliers, the highest LOD score peak occurs at the true 

QTL positions on true chromosomes for the Proposed2 (robust BND) method only 

(Figure 1(d)). That is, from Table 2 and Figure 1 we observe that all of the four 

methods (ML, LS, Proposed1 and Proposed2) identify the true QTL positions 

correctly in absence of outliers. But in presence of outliers, the ML and LS fail to 
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identify any significant QTL position, and the Proposed1 (classical BND) method 

identify QTLs on chromosomes 3 at marker 8 (locus position 35 cM), on 

chromosome 5 at marker 5 (locus position 20 cM), on chromosome 6 at marker 2 

(locus position 5 cM) and on chromosome 8 at marker 3 (locus position 10 cM). 

In presence of outliers, only the position on chromosome 5 at marker 5 identified 

by the classical BND method is the true QTL position, and all other positions 

identified by the classical BND are not the true QTL positions. However, in 

presence of outliers, the Proposed2 (robust BND) method has identified the QTLs 

on chromosome 2, 3 and 5 at marker 5 (locus position 20 cM) which are the true 

QTL positions. 
 

 

Figure 1: Simulated phenotypic observations in (a) absence and (b) presence of 

12% outliers, and LOD score profile in (c) absence and (d) in presence of 12% 

outliers.Proposed1: Classical BND based method of SIM. Proposed2: Robust 

BND based method of SIM. 

Hence, in presence of outliers, the classical methods of SIM (ML, LS and classical 

BND) fail to identify all the true QTL positions whereas the Proposed2 (robust 

BND) method successfully identifies all the true QTL positions. Also in absence 

of outliers, the Proposed2 method is working as the classical methods of SIM for 

single-trait QTL analysis. 
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3.2  Real Data Analysis Results 

To investigate the performance of the proposed methods for real data analysis in a 

comparison of traditional ML and LS methods, we have considered the 

hypertension dataset of Sugiyama et al. (2001) which is available in R/qtl package 

(Broman et al., 2003), homepage: http://www.rqtl.org. This dataset was analyzed 

to investigate the genetic control of salt-induced hypertension on male mice from 

a reciprocal backcross between the salt-sensitive c57BL/6J and the non-salt-

sensitive A/J (A) inbred mouse strains.  

 

Figure 2: LOD score profile plots with hypertension using ML, LS, Proposed1 

(classical BND) and Proposed2 (robust BND). (a) LOD score plot in absence of 

phenotypic outliers and (b) in presence of 12% phenotypic outliers. 

Figure 2 represents the LOD score profile plots in absence and presence of 

outliers. Figure 2(a) shows the LOD scores profile in absence of outliers, where 

dotted (red colour), two dash (green colour), dot dash (blue colour) and solid 

(black colour) lines represents the LOD scores at every 1cM position on the 

chromosomes for the ML, LS, Proposed1 (classical BND) and Proposed2 (robust 

BND) method, respectively.  Figure 2(b) shows the LOD scores profile for the 

contaminated dataset, where the LOD scores at every 1cM position on the 

chromosomes for the ML, LS, Proposed1 (classical BND) and Proposed2 (robust 

BND) methods are presented by the same line styles and colours as Figure 

2(a).For the Proposed2 method with contaminated data, we have selected the best 
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value of the tuning parameter β as β = 0.2by cross-validation (for details see 

Mollah et al., 2007). 

Figure 2(a) shows that two QTLs on chromosome 1 (QTL/marker: D1Mit334) and 

chromosome 4 (QTL/marker: D4Mit164) are statistically significant genome-

wide, and one QTL on each of chromosomes 2 (QTL/marker: D2Mit62), 6 

(QTL/marker: D6Mit8), 8 (QTL/marker: D8Mit271) and 15 (QTL/marker: 

D15Mit152) are suggestive to be important for controlling blood pressure 

genome-wide by all four methods for the uncontaminated real dataset. In presence 

of outliers, almost similar results are obtained by the robust BND (Proposed2) 

method only as shown in Figure 2(b) whereas all the classical methods fail to 

identify the same QTL positions as identified in absence of outliers. Therefore, the 

Proposed2 method (robust BND) significantly outperforms over the traditional 

ML and LS method as well as the Proposed1 (classical BND) method in presence 

of outliers. Otherwise, it shows equal performance. 

Sugiyama et al. (2001) found that the QTL D1Mit334 on chromosome 1 and the 

QTL D4Mit164 on chromosome 4 were significantly associated with hypertension 

in mouse which supports our findings by the proposed methods (Proposed1 and 

Proposed2) in absence of outliers and by the Proposed2 method in presence of 

outliers. They also suggested the QTLs D6Mit15 and D15Mit152 on 

chromosomes 6 and 15, respectively, as important QTLs for affecting blood 

pressure which are similar to our suggestive QTLs responsible for hypertension 

based on our proposed methods. 
 

4.  Conclusion 
 

In this paper, first, we have introduced a new approach of SIM (Proposed1) using 

the properties of BND. Then a new robust approach of SIM (Proposed2) for QTL 

analysis has been developed by robustifying the classical BND based SIM 

approach (Proposed1) using maximum β-likelihood estimation with BC 

population. The value of the tuning parameter β plays a key role in the 

performance of the Proposed2 method. An appropriate value for the tuning 

parameter β can be selected by cross-validation. The Proposed2 method with 

tuning parameter β = 0 reduces to the traditional interval mapping approach. 

Simulation and real data analysis results show that the Proposed1 (classical BND) 

method exhibits almost the same performance as the traditional ML and LS 
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methods of SIM in all cases (presence and absence of outliers).However, 

simulation and real data analysis results reveal that the Proposed2 (robust BND) 

method significantly improves the performance over the classical interval 

mapping approaches in presence of phenotypic outliers. 
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