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Abstract 

A new three-parameter lifetime model called the odd Burr Lomax (OBLo) is defined and 
studied. The density of the OBLo model can be asymmetric heavy tail right skewed 
density and symmetric density with different useful shapes. Hazard Rate Function (HRF) 
of the odd Burr Lomax can be "monotonically decreasing", "J-hazard rate function", 
"increasing-constant" and "monotonically increasing". The approach of copula is used for 
deriving many bivariate odd Burr Lomax type distributions. Bayesian and non-Bayesian 
estimation methods are considered. Four non-Bayesian estimation methods are considered 
and compared such as the maximum likelihood estimation method, ordinary least square 
estimation method, weighted least square estimation method and Kolmogorov estimation 
method. The Bayesian estimation method is considered under the squared error loss 
function. We assessed the performance of the log-likelihood estimation method via 
simulation study. The odd Burr Lomax model could be chosen as the best model among 
Lomax, exponentiated Lomax, Kumaraswamy Lomax, Macdonald Lomax, beta Lomax, 
gamma Lomax, odd log-logistic Lomax, reduced odd log-logistic Lomax, reduced Burr-
Hatke Lomax, reduced OBLo and special generalized mixture Lomax distribution in 
modeling the "failure times" and the "service times" data sets. 
 

Keywords: Lomax model; maximum likelihood estimation; Simulations; Copulas; 
Renyi's entropy; Farlie Gumbel Morgenstern family; Bayesian estimation. 
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0. Twin Statisticians: My Friends Bimal K. Sinha and Bikas K.  

    Sinha by M. Masoom Ali 
 

There is hardly any statistician of my generation or previous two or three 

generations who has not heard the names of the Sinha twins.  Professor Bimal K. 

Sinha of University of Maryland Baltimore County, USA and his twin brother 

Professor Bikas K. Sinha of ISI Kolkata, India, have established themselves as 

equally famous and well-respected statisticians. I am not going to talk here about 

them as statisticians. I will rather talk about my personal relation with them as 

colleagues, friends and well-wishers. 
 

My first meeting with the twin brothers was very interesting. In 1989 I went to the 

Aligarh Muslim University to present an invited paper at the International 

Symposium on Optimization and Statistics. During one of the conference sessions 

while I was listening to a speaker I just casually noticed one of the attendees and 

when I momentarily went out of the room I found the same person outside the 

room.  I quickly went back to the room and found that person still sitting in the 

room listening to the lecture.  When I went outside again the same person was still 

outside. I was wondering if I lost my mind.  So I talked to another participant who 

told me I was not hallucinating and that they are the twins named Bimal Sinha and 

Bikas Sinha. Apparently the brothers had heard my name before. We became 

good friends since then.  Being identical twins, at least that’s how they looked to 

me in the early days, I could not distinguish the two brothers for a long time until 

they grew much older when some changes in their facial features made them 

relatively identifiable.  I have no problem to recognize them now. 
 

I met Bikas again in Cairo, Egypt in September 1991 at the International 

Statistical Institute (ISI) Meeting. When he found out that I was going to Dhaka 

before returning to USA, he invited me to visit ISI Kolkata as a visiting 

scientist.  My wife and I spent few days at ISI Kolkata in November 1991.  I 

delivered a series of lectures and met a young assistant professor by the name Dr. 

Subir K. Bhandari. He requested me to collaborate with him in couple of papers 

which were later published.  It was a great experience and Bikas made sure our 

stay at the ISI was very comfortable. 
 

Both Bimal and Bikas had visited Ball State at my invitation to give invited talks.  

Bikas, I believe, visited me twice. It was during Bimal’s visit to Ball State in 2002 

that I was very surprised when the ‘Sagamore of the Wabash Award’ which is the 

highest award of the State of Indiana in USA was awarded to me by the Governor 

of the State and I was happy that Bimal was present at that ceremony. 
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Both Bimal and Bikas address me as either Dada or Ali-da. They both have 

tremendous respect and love for me and I have the same for them.  Both of them 

are proud of their origin in Bangladesh and almost consider Rajshahi University 

their home university and I have met Bikas there couple of times during my visits 

to Rajshahi University.  I provide below some excerpts from our most recent 

email correspondences which may explain our relation better. The excerpts from 

the emails show how much love and respect they have for me.  
 

2/7/21 

Dear Ali-da: Here is something for your loving brother Bimal. [This was a news 

about the creation of an endowed chair in his name at the University of Maryland 

Baltimore County.] 

Dear Bimal, 

CONGRATULATIONS!!! 

Thank you very much for remembering this old statistician and brother to share 

this great news. It has always been nice to know the Sinha brothers and I am 

always humbled by both of your respect and love for me. I have been always 

proud of you both. You have done a lot for the statistics program at UMBC and 

this is a great recognition for that and also a tribute to your contributions in the 

field of statistics worldwide. Please visit us if you pass this way. Your Boudi 

sends her congratulations to you and your family. Love. Ali-da 
 

2/7/21 

Hello Dada: Thank you so much for your kind words and so much love for us! 

Of course, I remember very well that day/evening - we celebrated together the 

wonderful news of your extraordinary achievement - Jyoti Sarkar/his wife were 

also with us during that time. I believe the occasion was - you kindly invited me to 

visit your dept/give a seminar then in the evening we were together at your place - 

J/his wife also joined us - had great dinner prepared by Boudi. I also remember 

after dinner activities, including your playing the harmonium and singing a few 

Tagore songs in your wonderful melodious voice!  

I remember your very kind and gracious offer to Manisha for visiting your 

univ/dept multiple times at my request. For all these wonderful memories - I am 

humbled/blessed! You are exactly 10 years ahead of us, but in the picture you 

look so FIT and SMART and I look like an OLD MAN!! 

Love/pranam. 

Bimal 
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2/24/2021 

Dear Dada: Our love and respect for you knows no bounds. [This follows a long 

narrative of his school and college and university life.] 

Pranam. Bimal 
 

2/26/2021 

Dear Bimal, 

Thank you for your email. I have a special place in my heart for the twin 

statisticians Bimal/Bikas. You both are very much revered by statisticians in 

Bangladesh and especially by Rajshahi University statisticians and I am very 

proud of you both. I am attaching a picture of both of us during your visit to BSU. 

You possibly remember you were with me that afternoon when I was surprised to 

be awarded ‘Sagamore of the Wabash’, the highest honor bestowed by the 

Governor of Indiana and the highest award of the State of Indiana, USA. I am glad 

you were with me on that day. I also had a great time at the ISI, Kolkata at the 

invitation of Bikas when he was the Director. That short visit had also resulted in 

two joint papers with Subir Bhandari. And you had requested me to include 

Manisha in my research group. I had brought her to Ball State twice as a visitor 

and she coauthored with me in many papers over the years. I was sorry to hear 

about her husband’s demise in an auto accident. May both of you be able to 

continue with your excellent work. I hope to see both of you soon in person.  I am 

running on 85 and getting a bit weaker. I am otherwise fine.  

My deep regards and love for both of you.  

Alida 
 

On Feb 27, 2021                                                                                                                                           

Ali-da: If Winter comes, can Spring be far behind? I hope.....you will dig into your 

photo collection and come up with a replica of this photo with bikas in place of 

bimal!!! That would be wonderful. 

Bks [Bikas] 
 

[I had a picture with Bimal but I was not sure if it was Bimal or Bikas.  So I sent 

the picture to both of them to ascertain who it was and the above was the 

humorous reply from Bikas.]        

*In all these emails ‘we’ everywhere refers to Bimal and Bikas.  Their emails 

reflected the same sentiments.                                                                                           
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Bimal and Bikas – I feel very fortunate that my path and your paths crossed.  You 

both are indeed like my own younger brothers. We have many memories of our 32 

years of friendship. I sincerely admire both of you for what you have 

accomplished professionally and what you have done for the field of Statistics. I 

am very proud of both of you.  I am so delighted to see that the International 

Journal of Statistical Sciences published by the Department of Statistics, Rajshahi 

University is bringing out this special volume in honor of both of you to express 

their heartfelt gratitude for what you do for them. You never forgot your root, a 

small village in former East Pakistan, now Bangladesh. Finally, I thank the 

Department of Statistics, Rajshahi University for honoring these two very loyal 

scholars Professor Bimal Sinha and Professor Bikas Sinha in this befitting 

manner.     
 

1. Introduction 

The Lomax (Lo) distribution is a right heavy-tail model used in business, actuarial 

science, biological sciences, engineering, economics, income and wealth 

inequality, queueing theory, size of cities, and internet traffic modeling. It has been 

applied to model data obtained from income and wealth (Harris (1968) and 

Atkinson and Harrison (1978)), firm size (Corbellini et al. (2007)), reliability and 

life testing (Hassan Al-Ghamdi (2009)), Hirschrelated statistics (Glanzel (2008)). 

The Lo model is known as a special model form of Pearson type VI distribution 

and is also considered as a mixture of exponential and gamma distributions. The 

Lo model belongs to the family of "decreasing" hazard rate function (HRF) and 

considered as a limiting model of residual lifetimes (Balkema and de Hann (1974) 

and Chahkandi and Ganjali (2009)). The Lo distribution has been suggested as 

heavy tailed alternative to the exponential (Exp), Weibull (W) and Gamma 

distributions (Bryson (1074)). For details about relation between the Lo model and 

the Burr family and Compound Gamma (CGam) model see Tadikamalla (1980) 

and Durbey (1970). The main aim of this work is to provide a flexible extension of 

the Lo distribution using the odd Burr-G (OB-G) family defined by Alizadeh et al. 

(2017).  The new model proved its ability in modeling the "monotonically 

decreasing", "J-hazard rate function", "increasing-constant HRF" and 

"monotonically increasing". A random variable (RV)   has the Lomax (Lo) 

distribution with parameter    if it has cumulative distribution function (CDF) (for  

    ) given by 

   
( )    (   )

 
 

                                                    (1) 
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where        refers to the shape parameter. Then the corresponding probability 

density function (PDF) of (1) is 

   
( )  

 

  
(   )

 
 

  
  

                                                  (2) 

Due to Alizadeh et al. (2017), the CDF of the OB-G family is given by 

        ( )    
  ( )    

0  ( )     ( )  1
  

                                     ( ) 

where    ( )      ( )   The PDF corresponding to (3) is given by 

        ( )  
      ( )  ( )      ( )      

0  ( )     ( )  1
    

                          ( ) 

For       , the OB-G family reduces to the Odd G (O-G) family (see Gleaton 

and Lynch (2006)). For       , the OB-G family reduces to the Proportional 

Reversed Hazard Rate family (PRHR) (see Gupta and Gupta (2007)). The odd Burr 

Lomax (OBLo) CDF is given by 
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where     
    

  
 . For       , the OBLo reduces to the OLo. For       , the 

OBLo reduces to the PRHRLo. The PDF corresponding to (5) is given by 
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The HRF for the new model can be derived from    ( ) [    ( )] . Many 

useful Lo extensions can be found in Tahir et al. (2015) (Weibull Lomax 

distribution), Cordeiro et al. (2018) (the one parameter Lomax system of densities), 

Altun et al. (2018a) (Odd log-logistic Lomax), Altun et al. (2018a) (Zografos-

Balakrishnan Lomax distribution), Elbiely and Yousof (2018) (Weibull generalized 

Lomax, Rayleigh generalized Lomax and Exponential generalized Lomax 
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distributions), Yousof et al. (2019) (Topp Leone Poisson Lomax distribution), 

Goual and Yousof  (2019) (Lomax inverse Rayleigh), Yousof et al. (2019b) (the 

Topp-Leone generated Lomax model),Gad et al. (2019) (Burr type XII Lomax, 

Lomax Burr type XII and Lomax Lomax distributions), Yousof et al. (2019a) (new 

zero-truncated version of the Poisson Lomax distribution), Yadav et al. (2020) 

(Topp Leone Lomax distribution), Ibrahim and Yousof (2020) (Poisson Burr X 

generalized Lomax and Poisson Rayleigh generalized Lomax distributions) and 

Elsayed Yousof (2021) (extended Poisson Generalized Lomax distribution).  

For illustrating the flexibility of the new density and its corresponding HRF we 

presented Figure 1 (all figures are listed in Appendix A). Figure 1 (left plot) gives 

some PDF shapes. Figure 2 (right plot) gives some HRF shapes. Based on Figure 1 

(left plot) the PDF of the OBLo model can be asymmetric heavy tail right skewed 

PDF and symmetric PDF. Based on Figure 2 (right plot) the OBLo HRF can be 

"decreasing" (                 ), "J-shape" (                   ), 

"increasing-constant" (                     ) and "increasing" (     

            ). 

The OBLx model could be useful in modeling the asymmetric monotonically 

increasing hazard rate real data sets as illustrated in Figure 7 (bottom left panel) 

and Figure 8 (bottom left panel), the real data sets which have no extremes as 

shown Figure 7 (top right panel) and Figure 8 (top right panel) the real data sets for 

which their Kernel density is semi-symmetric and bimodal as shown in Figure 7 

(bottom right panel) and Figure 8 (bottom right panel). The OBLx model proved its 

wide applicability in modeling against common Lomax extensions. In modeling of 

the failure times data, the OBLx model is compared with many well-known Lomax 

extensions such as the exponentiated Lomax extension, the odd log-logistic Lomax 

extension, the transmuted Topp-Leone Lo extension, the Kumaraswamy Lo 

extension, Gamma Lo extension, special generalized mixture Lo extension, the 

Burr Hatke Lo extension and the proportional reversed hazard rate Lo extension 

under the consistent-information criteria, Akaike information criteria, Bayesian 

information criteria and Hannan-Quinn information criteria.  In statistical modeling 

of the service times, the OBLx model is compared with many well-known Lomax 

extensions such as the exponentiated Lomax extension, the odd log-logistic Lomax 

extension, the transmuted Topp-Leone Lo extension, the Kumaraswamy Lo 

extension, Gamma Lo extension, special generalized mixture Lo extension, the 

Burr Hatke Lo extension and the proportional reversed hazard rate Lo extension 
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under the consistent-information criteria, Akaike information criteria, Bayesian 

information criteria and Hannan-Quinn information criteria. Additionally, we 

derived some new bivariate OBLx (BOBLx) via Farlie Gumbel Morgenstern 

(FGM) copula, modified Farlie Gumbel Morgenstern (FGM) copula, Renyi's 

entropy and Clayton copula. The Multivariate OBLx (MOBLx) type is also 

presented using the Clayton copula. However, future works could be allocated to 

study these new models. 
 

2. Mathematical properties 

2.1. Asymptotics and quantile function 

In mathematical analysis, the asymptotic analysis is used for describing the 

limiting behavior of some functions. Asymptotic derivations for the CDF, PDF and 

HRF can be obtained for the new model. The asymptotics of the CDF, PDF and 

HRF as       are given by 

                ( )    [  (   )
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The asymptotics of CDF, PDF and HRF as       are given by 
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For simulation of this new model, we obtain the quantile function (QF) of   (by 

inverting (5)), say        ( ), as  
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Equation (7) is used for simulating the new model. 
 

2.2. Useful representations 

Due to Alizadeh et al. (2017), the PDF in (6) can be expressed as 

 ( )  ∑   
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and         
( )  is the PDF of the Lo model with power parameter     . By 

integrating Equation (8), the CDF of     becomes  

 ( )  ∑   

 

   

       
( )                                                    ( ) 

where         
( )  is the CDF of the Lo distribution with power parameter     . 

 

2.3. Moments and incomplete moments 

The       ordinary moment of     is given by  
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where   (     )  ∫
 

 
     (   )         Setting         and     in (10), 

we have 
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   is the mean of   .  The       incomplete moment, say    ( ), of  

   can be expressed, from (9), as  
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where    (     )  ∫       

 
(   )         The first incomplete moment given 

by (11) with       is  
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The index of dispersion IxD is the ratio of variance and mean and can be derived as 

ID( )           
    It is a measure used to quantify whether a set of observed 

occurrences are clustered or dispersed compared to a standard statistical model. 

Figure 2 gives some three-dimensional skewness plots for parameter   . Figure 3 

shows some three-dimensional kurtosis plots for parameter   . Figures 2 and 3 
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illustrate the wide flexibility of the skewness and the kurtosis of the OBLo model 

which helps statisticians in modeling various real data sets. 
 

2.4. Some generating functions (GF) 

The moment generating function (MGF) can be derived using (8) as  

  ( )  ∑ ∑ ∑
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The first   derivatives of    ( ), with respect to   at     , yield the first     

moments about the origin, i.e., 
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  ( ) (    and            )  

The cumulant generating function CGF is the logarithm of the MGF. Thus, s
th 

cumulant, say     , can be obtained from 
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3. Extensions via Copula 

In this section, we derive some new bivariate type OBLo (BOBLo) models using 

Farlie Gumbel Morgenstern (FGM) copula (see Morgenstern (1956), Gumbel 

(1958) and Gumbel (1960)), modified FGM copula (see Rodriguez-Lallena and 

Ubeda-Flores (2004)) and Clayton copula and Renyi entropy copula (Pougaza and 

Djafari (2011)). The multivariate OBLo (MvOBLo) type is also presented. 

However, future works may be allocated to study these new models (see Al-

babtain et al. (2020), Yousof et al. (2020a and 2021), Shehata and Yousof  

(2021a,b) and Ali et al. (2021a,b)). First, we consider the joint CDF of the FGM 

family, where    (   )    (     )              with the marginal functions  

     
(  ),       

(  ),    (    )  is a dependence parameter and for every  

    (   ),   (   )   (   )     which is "grounded minimum" and  

 (   )     and   (   )     which is "grounded maximum",   (     )  

 (     )   (     )   (     )    .   
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3.1. BOBLo type via FGM copula 

A copula is continuous in   and  ; actually, it satisfies the stronger Lipschitz 

condition, where 

  (     )   (     )                   

For             and              we have  

  (               )   (     )   (     )   (     )   (     )

    

Then, setting         
(  ) [  (   ) (   )]  and  

       
(  ) [  (   ) (   )]   we can esaily obtain the joint CDF of the FGM 

family. The joint PDF can then be derived from 

  (   )          (        and        ) or from 

 (     )   .   
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(  )/    
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3.2. BOBLo type via modified FGM copula 

The modified FGM copula is defined as    (   )    ,    ( ) ( )-   (    )  

or    (   )             (    ), where       ( ), and       ( )  and  

 ( )  and   ( )  are two continuous functions on  (   )  with   ( )   ( )  
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Consider the following functional form for both      and      where     
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( )]  and      [     

( )]   Then, the BOBLo-FGM (Type-I) can 

be derived from    (   )             (    )  
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 Type-II 

Let   ( )   and   ( )   be two functional forms which satisfy all the conditions 

stated earlier where   ( )  (    )     (   )      and   ( )  (    )  

   (   )       Then, the corresponding BOBLo-FGM (Type-II) can be derived 

from          
(   )    ,    ( )   ( ) -  

 Type-III 

Let     [   (   )]        and     ,   (   )-       . In this case, one 

can also derive a closed form expression for the associated CDF of the BOBLo-

FGM (Type-III) from    (   )    (      )  

 Type-IV 

The CDF of the BOBLo-FGM (Type-IV) model can be derived from   (   )  

    

  ( )      

  ( )     

  ( )   

  ( )  where     

  ( )  and     

  ( )  can be easily 

derived (see Ghosh and Ray (2016)). 
 

3.3. BOBLo type via Ali-Mikhail-Haq copula 

Under the stronger Lipschitz condition, the joint CDF of the Archimedean Ali-

Mikhail-Haq copula can be expressed as 

 (     )  
 

       

       (    )  

and the corresponding joint PDF of the Archimedean Ali-Mikhail-Haq copula can 

be expressed as 

 (     )  
 

[       ]
 4      

    

       

5    (    )  

and setting          
(  )  and          

(  )  we can derive the joint 

CDF and the joint PDF of the BOBLo type via Ali-Mikhail-Haq copula. 
 

3.4. BOBLo and MvOBLo type via Clayton copula 

The Clayton copula can be considered as   (     )  ,(    )
  (    )

  

 -    
   (   )   Setting        

( )  and         
( ) , the BOBLo type can be 

derived from   (     )   (   
( )    

( ))   Similarly, the MvOBLo (  -
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dimensional extension) from the above can be derived from   (  )  

(∑   
   

       )    
  

 

3.5. BOBLo type via Renyi's entropy copula 

Using the theorem of Pougaza and Djafari (2011) where   (   )          

     , the associated BOBLo will be   (   )   (   
(  )    

(  ))  
 

4. Estimation 

In this Section, non-Bayesian and Bayesian estimation methods are considered. In 

first subsection, we will consider four non-Bayesian estimation methods such as 

the maximum likelihood estimation (MLE) method, ordinary least square 

estimation (OLSE) method, weighted least square estimation (WLSE) method and 

Kolmogorov estimation (KE) method. In the second subsection, the Bayesian 

estimation method under the squared error loss function (SELF) is considered. 
 

4.1. Non-Bayesian estimation methods 

The MLE 

Let              be a random sample of size   from the OBLo distribution with 

parameters       and   . Let      be the       parameter vector. For 

determining the MLE of   , we have the log-likelihood function 
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The components of the score vector,   ( )  
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 .
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available if needed. Setting   (  )   (  )   (  )     and solving them 

simultaneously yields the MLE   ̂   ̂   ̂ . To solve these equations, it is usually 

more convenient to use nonlinear optimization methods such as the quasi-Newton 

algorithm to numerically maximize   . For interval estimation of the parameters, 



 

 

 

 

 

 

 

Ali, Yousof 
 
and Ibrahim: A New Lomax Type Distribution...                                             75 

 

 

we obtain the       observed information matrix   ( )  *   ( )     + | 

(            )  

OLS 

Let    ( ,   -)  denote the CDF of OBLo model and let   ,   - <  ,   - < …  ,   - 

be the     ordered random sample. The OLSEs are obtained upon minimizing  
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where    
( ,   -  )     ( ,   -)    ,    

( ,   -  )     ( ,   -)    ,  

   
( ,   -  )     ( ,   -)     . 

 

WLSE 

The WLSEs are obtained by minimizing the function      ( )  WRT           
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where       ,(   ) (   )- , (     )-   The WLSEs are obtained by 

solving 
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where     
( ,   -  ),     

( ,   -  ),     
( ,   -  )  are defined above. 

KE method 

The Kolmogorov estimates (KEs) of           are obtained by maximizing the 

function  
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4.2. Bayesian estimation 

Assume the gamma priors of the parameters            of the following forms 

   (     )(  )   amma(     )  

   (     )(  )   amma(     ), 

   (     )(  )   amma(     )   

Assume that the parameters are independently distributed. The joint prior 

distribution can be written as  

 (     )
(        )  

  
    

    
    

    
  

    
  

    

 (  ) (  ) (  )
   , (              )-  

The posterior distribution   (          )  of the parameters is defined as  

 (          )  likelihood(   )   (     )
(        )  

Under squared error loss function, the Bayesian estimators of            are the 

means of their marginal posteriors. It is not possible to obtain the Bayesian 

estimates through the above formulae. So, the numerical approximation are 

needed. We propose the use of MCMC techniques namely Gibbs sampler and 

Metropolis Hastings (M-H) algorithm. Since the conditional posteriors of the 

parameters            cannot be obtained in any standard forms, therefore, using a 

hybrid MCMC for drawing samples from the joint posterior of the parameters is 

suggested and the full conditional posteriors of            can be easily derived. 

The simulation algorithm is given by 

1) Provide the initial values, say         and      then at   (th)  stage, 

2) Using M-H algorithm, generate    ( )    .     ( )   ( )
  /   

3) Using M-H algorithm, generate    ( )    .     ( )   ( )
  /   

4) Using M-H algorithm, generate    ( )    .     ( )   ( )
  /   

5) Repeat steps    ,           times to get the samples of size     from the 

corresponding posteriors of interest. Obtain the Bayesian estimates of  

          and  using the following formulas 
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respectively, where    (      )  is the burn-in period of the generated MCMC. 
 

5. Simulation studies for comparing estimation methods 

A numerical simulation is performed to compare the classical estimation methods. 

The simulation study is based on N=       generated data sets from the OBLo 

version where                and       and some differnt combinations of  

       and      (see Table 1, all Tables are listed in Appendix B). The estimates 

are compared in terms of their 

 Bias BIAS(   ); 

 Root mean-standard error RMSE(   ); 

 The mean of the absolute difference between the theoretical and the estimates 

"D-abs" and 

 The maximum absolute difference between the true parameters and estimates 

"D-max". 

From Tables 2, 3, 4 and 5 we note that: 

 The BIAS ( ) tends to zero when     increases which means that all estimators 

are consistent. 

 The RMSE ( )  increases and tends to zero when     increases which means 

incidence of consistency property. 

 For all sample sizes (               and      ) and for all combinations, 

the Bayesian estimates have the smallest RMSE where: 
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For blend I and n = 50; the RMSEBayes (        ) = (0:04979; 0:02324; 0:08212). 

For blend II and n = 50; the RMSEBayes (        ) = (0:08462; 0:09023; 0:13619). 

For blend III and n = 50; the RMSEBayes (        ) = (0:12571; 0:08183; 0:09991). 

For blend IV and n = 50; the RMSEBayes (        ) = (0:07443; 0:08300; 0:16073). 

For blend I and n = 100; the RMSEBayes (        ) = (0:03742; 0:02080; 0:07806). 

For blend II and n = 100; the RMSEBayes (        ) = (0:03380; 0:04244; 0:07857). 

For blend III and n = 100; the RMSEBayes (        ) = (0:09183; 0:04195; 0:05440). 

For blend IV and n = 100; the RMSEBayes (        ) = (0:03760; 0:04162; 0:07287). 

For blend I and n = 150; the RMSEBayes (        ) = (0:02840; 0:02150; 0:04967). 

For blend II and n = 150; the RMSEBayes (        ) = (0:02795; 0:03583; 0:05343). 

For blend III and n = 150; the RMSEBayes (        ) = (0:06512; 0:03660; 0:04957). 

For blend IV and n = 150; the RMSEBayes (        ) = (0:03186; 0:06761; 0:05407). 

For blend I and n = 300; the RMSEBayes (        ) = (0:01934; 0:02115; 0:00853). 

For blend II and n = 300; the RMSEBayes (        ) = (0:02931; 0:01906; 0:02763). 

For blend III and n = 300; the RMSEBayes (        ) = (0:02354; 0:03125; 0:04394). 

For blend IV and n = 300; the RMSEBayes (        ) = (0:02937; 0:06011; 0:02224). 

 

6. Applications for comparing Bayesian and non-Bayesian methods 

6.1. Comparing Bayesian and non-Bayesian methods under failure times 

The first real data set (data set I) represents the data on failure times of 84 aircraft 

windshield given in Murthy et al. (2004). We consider the Cramér-Von Mises 

(  ) and the Anderson-Darling (  ) statistic. From Table 6, the WLE method is 

the best method with   =0.76775and  =0.07763 then MLE method with 

  =0.95305and  =0.10143. However, the worst estimation method in modeling 

failure times is the OLSE method with W*=1.29159and  =0.14925. 
 

6.2. Comparing Bayesian and non-Bayesian methods under service times 

The second real data set (data set II) represents the data on service times of 63 

aircraft windshield given in Murthy et al. (2004). Many other useful real life data 

sets can be found in Aryal et al. (2017), Yousof et al. (2018), Elbiely and Yousof 

(2018), Ibrahim and Yousof (2020), Yadav et al. (2020), Mansour et al. (2020e), 

Goual et al. (2020). From Table 7, the WLSE method is the best method with 

  =1.09682 and   =0.18030 then the Baysian method with   =1.19580 



 

 

 

 

 

 

 

80                                     International Journal of Statistical Sciences, Vol. 21(2), 2021 

 

and   =0.19713. However, the worst estimation method in modeling failure times 

is the KE method with   =1.75321and  =0.28872. 
 

7. Modeling 

7.1. Assessment 

Graphically and using the biases and mean squared errors (MSEs), we can perform 

the simulation experiments to assess the finite sample behavior of the MLEs. The 

assessment was based on    =1000 replication for all    (              )   The 

following algorithm is considered: 

1) Generate    =1000 samples of size    (              )  from the OBLo 

distribution using (7); 

2) Compute the MLEs for the    =1000 samples,  

3) Compute the SEs of the MLEs for the 1000 samples. The standard errors (SEs) 

were computed by inverting the observed information matrix. 

4) Compute the biases and mean squared errors given for             . We 

repeated these steps for                   and compute biases 

(Bias ( ))  and      (    ( ))  for              and  

  (              ).  

Figures 4, 5 and 6 give the biases (left plots) and MSEs (right plots) for the 

parameters         and      respectively. The left plots show how the three biases 

vary as      . The right plots show how the three MSEs vary as      . The 

broken line in red in Figure 4 corresponds to the biases being    . From Figures 6, 7 

and 8 (left plots), the biases are generally negative and tends to zero as      . 

From Figures 4, 5 and 6 (right plots), the MSEs decrease to zero as      . 
 

7.2. Applications for comparing models 

In this section, we provide two real life applications to two real data sets to 

illustrate the importance and flexibility of the OBLo model. We compare the fit of 

the OBLo with some well-known competitive models such as Lomax model, 

exponentiated Lomax extension, beta Lomax extension, gamma Lomax extension, 

transmuted Topp-Leone Lomax extension, reduced transmuted Topp-Leone 

Lomax extension, odd log-logistic Lomax extension, reduced odd log-logistic 

Lomax extension, reduced Burr-Hatke Lomax extension, proportional reversed 
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hazard rate Lomax extension and special generalized mixture Lomax extension 

(see Table 8). 

For checking the normality of the two real data sets, the Quantile-Quantile (Q-Q) 

plot is provided. For exploring the HRF for real data, the total time test (TTT) plot 

is sketched. For exploring the initial density shape nonparametrically, the 

nonparametric kernel density estimation (NKDE) is given. Figures 7 and 8 give the 

normal Q-Q plots, the box plots, TTT plots and NKDE plots for the two data sets 

respectively. Based on Figures 7(a) and 8(a), we note that the normality is nearly 

exists. Based on Figures 7(b) and 8(b), we note that no extreme values were 

spotted. Based on Figures 7(c) and 8(c), we note that the HRF is "monotonically 

increasing" for the two data sets. Figures 7(d) and 8(d) show NKDE is bimodal and 

nearly symmetric. 

We estimate the unknown parameters of each model by maximum likelihood using 

"L-BFGS-B" method and the goodness-of-fit statistics Akaike information 

criterion (AIC), Consistent AIC (CAIC), Bayesian IC (BIC), Hannan-Quinn IC 

(HQIC),    and    are used to compare the five models. 

Regarding the failure times data: Table 11 gives the MLEs and standard errors 

(SEs). Table 10 gives the goodness-of-fits statistics. Regarding the service times 

data: Table 4 gives the MLEs and SEs. Table 5 gives the goodness-of-fits statistics. 

Based on resuls of Tables 8 and 10, it is noted that the OBLo model has the lowest 

values of AIC, CAIC, BIC, HQIC,      and      For failure times data:  ̂ =   

134.3584, AIC=274.7169, CAIC=275.0169, BIC=282.0093, HQIC=277.6484,  

    0.9444 and      0.1005.For service times data:  ̂ =   104.4258, 

AIC=214.8517, CAIC=215.2584, BIC=221.2811, HQIC=217.3804,      1.2820 

and      0.2115.Moreover, other graphical tools are employed for supporting the 

numerical results of Table 3 and 5. Figures 9 and 10 give the fitted PDF, fitted 

CDF, probability-probability (P-P) plot and fitted HRF for data set I and data set 

II, respectively. 
 

8. Conclusions 

A new three-parameter lifetime model called the odd Burr Lomax is defined and 

studied. The density of the OBLo model can be asymmetric heavy tail right skewed 

density and symmetric density with different useful shapes. The hazard rate 

function of the OBLo can be "monotonically decreasing", "J-hazard rate function", 

"increasing-constant" and "monotonically increasing". The approach of copula is 
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used for deriving many bivariate odd Burr Lomax type distributions. Bayesian and 

non-Bayesian estimation methods are considered. Four non-Bayesian estimation 

methods are considered and compared such as the maximum likelihood estimation 

method, ordinary least square estimation method, weighted least square estimation 

method and Kolmogorov estimation method. The Bayesian estimation method is 

considered under the squared error loss function. We assessed the performance of 

the log-likelihood estimation method via simulation study. The odd Burr Lomax 

model could be chosen as the best model among Lomax, exponentiated Lomax, 

Kumaraswamy Lomax, Macdonald Lomax, beta Lomax, gamma Lomax, odd log-

logistic Lomax, reduced odd log-logistic Lomax, reduced Burr-Hatke Lomax, 

reduced odd Burr Lomax and special generalized mixture Lomax distribution in 

modeling the "failure times" and the "service times" data sets. 

As a future work, we can apply many new useful goodness-of-fit tests for the right 

censored distributional validation such as the Nikulin-Rao-Robson goodness-of-fit 

test statistic, modified Nikulin-Rao-Robson goodness-of-fit statistic  test, 

Bagdonavicius-Nikulin goodness-of-fit statistic test, modified Bagdonavicius-

Nikulin goodness-of-fit statistic test,  to the new odd Burr Lomax model as 

performed by Ibrahim et al. (2019), Goual et al. (2019, 2020), Salahet al. (2020), 

Mansour et al. (2020a,d), Ibrahimet al. (2020), Yadav et al. (2020), Goual and 

Yousof (2020 and 2021b) and Aidi et al. (2021), among others. 
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Appendix A: 

Figure 1: PDF and HRF plots for some selected parameters value.
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Figure 2: Three dimension skewness plots for parameter    
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Figure 3: Three dimension kurtosis plots for parameter     
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Figure 4: Biases and mean squared errors for the parameter    

 

Figure 5: Biases and mean squared errors for the parameter    

 

 

Figure 6: Biases and mean squared errors for the parameter    
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(a) (b)

(c) (d)

Figure 7: Normal Q-Q plot, box plot, TTT plot and nonparametric KDE for data set I.
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(a) (b)

(c) (d)

Figure 8: Normal Q-Q plot, box plot, TTT plot and nonparametric KDE for data set II.
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Figure 9: Fitted PDF, P-P plot, fitted CDF and fitted HRF for data set I.
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Figure 10: Fitted PDF, P-P plot, fitted CDF and fitted HRF for data set II.
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Appendix B: 

 

Table 1: Combinations. 

Blend β₁ β₂ β₃ 

I 2.0 0.5 0.5 

II 1.5 0.6 0.8 

III 0.9 0.9 1.5 

IV 1.8 0.8 1.8 

 

                               

Table 2: Simulation results for blend I. 

   BIAS   RMSE   D 
          

          

                                      β
3
                   β

2
                  β

1
              β

3                β2             β1
              D-abs          D-max 

          

MLE 50 0.00267 0.00967 0.03580 0.05030 0.07386 0.25600 0.00526 0.00978 

OLS  0.00486 0.00350 -0.02645 0.05213 0.08430 0.35576 0.00394 0.00674 

 WLS  0.00096 0.00760 0.06092 0.04919 0.07523 0.30290 0.00754 0.01391 

KE  -0.01004 0.02985 0.05993 0.04941 0.09253 0.40798 0.02652 0.04144 

Bayes[1]  0.01258 0.00255 0.08031 0.04979 0.02324 0.08212 0.05810 0.01192 

 

MLE 100 0.00055 0.00589 0.02243 0.03425 0.05154 0.17815 0.00400 0.00717 

OLS  0.00195 0.00276 -0.00161 0.03623 0.05842 0.25484 0.00044 0.00065 

WLS  0.00145 0.00345 0.05203 0.03672 0.05387 0.21881 0.00493 0.00917 

KE  -0.00406 0.01269 0.02394 0.03553 0.06076 0.28596 0.01108 0.01730 

Bayes[1]  0.02097 -0.01696 -0.07742 0.03742 0.02080 0.07806 0.02017 0.00003 

 

MLE 150 0.00132 0.00270 0.01344 0.02840 0.04161 0.14668 0.00145 0.00276 

OLS  0.00103 0.00197 -0.00606 0.02985 0.04767 0.20766 0.00035 0.00062 

WLS  0.00027 0.00325 0.03754 0.03022 0.04371 0.16318 0.00428 0.00795 

KE  -0.00376 0.01089 0.01959 0.03041 0.05184 0.23066 0.00966 0.01504 

Bayes[1]  0.00408 0.02108 -0.04919 0.02840 0.02150 0.04967 0.02107 0.00003 

 

MLE 300 0.00118 0.00063 0.00553 0.02036 0.02877 0.10189 0.00045 0.00090 

OLS  0.00031 0.00146 -0.00053 0.02136 0.03402 0.14806 0.00032 0.00061 

WLS  0.00104 0.00060 0.02412 0.02065 0.02910 0.11398 0.00183 0.00325 

KE  -0.00111 0.00410 0.00627 0.02094 0.03467 0.16061 0.00333 0.00517 

Bayes[1]  0.00078 0.01895 0.12023 0.01934 0.02115 0.00853 0.01146 0.00002 
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                            Table 3: Simulation results for blend II. 
 

 

 
 
 

 

 

 

 

 

                     

                         

   BIAS   RMSE   D 
          

          

                                        β
3
                  β

2
                   β

1
              β

3             β2             β1
            D-abs         D-max 

          

MLE 50 0.00566 0.01091 0.02735 0.09559 0.09144 0.18560 0.00455 0.00863 

OLS  0.00053 0.01321 -0.00505 0.09643 0.09818 0.25218 0.00491 0.00686 

WLS  0.00974 0.00511 0.05239 0.10044 0.09525 0.22870 0.00491 0.00815 

KE           -0.01139 0.02924 0.02434 0.10157 0.11532 0.31230 0.01833 0.02859 

Bayes[1]  0.07336 -0.01790 0.01563 0.08462 0.09023 0.13619 0.07690 0.11186 

 

MLE 100 0.00295 0.00373 0.00870 0.06263 0.05816 0.13081 0.00165 0.00313 

OLS  0.00713 0.00104 -0.01490 0.07331 0.07396 0.19181 0.00360 0.00627 

WLS  0.00516 0.00210 0.03448 0.07095 0.06470 0.15236 0.00321 0.00573 

KE           -0.00618 0.01468 0.01163 0.07252 0.07697 0.21914 0.00939 0.01464 

Bayes[1]  0.01977 0.07916 0.05863 0.03380 0.04244 0.07857 0.02599 0.04414 

 

MLE 150 0.00136 0.00346 0.00931 0.05399 0.05038 0.11037 0.00121 0.00233 

OLS  0.00181 0.00290 -0.00603 0.05662 0.05655 0.14610 0.00158 0.00277 

WLS  0.00265 0.00218 0.02977 0.05683 0.05256 0.12520 0.00316 0.00547 

KE           -0.00523 0.01060 0.01777 0.05596 0.05921 0.17388 0.00775 0.01275 

Bayes[1]  0.00133 0.00494 -0.11187 0.02795 0.03583 0.05343 0.01169 0.02091 

 

MLE 300 0.00092 0.01110 0.00177 0.03693 0.03401 0.07568 0.00026 0.00051 

OLS  0.00255 -0.00010 -0.00657 0.04077 0.04004 0.10371 0.00039 0.00075 

WLS           -0.00014 0.00242 0.02024 0.03898 0.03594 0.08470 0.00289 0.00534 

KE           -0.00316 0.00575 0.00120 0.04028 0.04125 0.12032 0.00379 0.00562 

Bayes[1]  0.01590 0.03487 0.04958 0.02931 0.01906 0.02763 0.01111 0.02083 
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Table 4: Simulation results for blend III. 
 

   BIAS   RMSE   D 
          

          

                                β
3
                   β

2
                  β

1
                 β

3             β2               β1
               D-abs           D-max 

          

MLE 50 -0.01048 0.02301 0.01908 0.21972 0.13362 0.11395 0.00863 0.01582 

OLS  0.01487 0.01664 -0.03789 0.26440 0.15351 0.12794 0.00601 0.01044 

WLS  0.01969 0.00821 0.02294 0.23133 0.13364 0.12791 0.00351 0.00593 

KE  -0.04812 0.05538 0.00393 0.27339 0.17465 0.17387 0.02246 0.03367 

Bayes[1]  0.11206 0.01701 -0.07882 0.12571 0.08183 0.09991 0.02631 0.04043 

 

MLE 100 0.00083 0.00836 0.00835 0.16257 0.09302 0.07996 0.00267 0.00513 

OLS  0.01433 0.00463 -0.02086 0.19035 0.10596 0.09136 0.00383 0.00694 

WLS  0.01522 0.00132 0.02077 0.16767 0.09472 0.09050 0.00313 0.00558 

KE  -0.02708 0.02775 0.00197 0.18757 0.11103 0.12064 0.01184 0.01769 

Bayes[1]  0.04838 -0.06514 -0.01016 0.09183 0.04195 0.05440 0.02182 0.03743 

 

MLE 150 -0.00030 0.00620 0.00345 0.12945 0.07500 0.06304 0.00187 0.00334 

OLS  0.01374 0.00050 -0.01602 0.15171 0.08501 0.07334 0.00358 0.00687 

WLS  0.00393 0.00414 0.01816 0.13253 0.07594 0.07568 0.00309 0.00547 

KE  -0.00941 0.01343 -0.00097 0.15234 0.08802 0.10355 0.00513 0.00741 

Bayes[1]  0.07841 -0.03322 -0.02630 0.06512 0.03660 0.04957 0.01902 0.03679 

 

MLE 300 0.00363 0.00063 0.00126 0.08802 0.05023 0.04453 0.00035 0.00057 

OLS  0.00615 0.00062 -0.00543 0.10782 0.05929 0.05351 0.00128 0.00250 

WLS  0.00222 0.00183 0.01199 0.09271 0.05320 0.05069 0.00201 0.00338 

KE  -0.00662 0.00805 -0.00138 0.11119 0.06310 0.07049 0.00321 0.00455 

Bayes[1]  0.00082 0.00831 0.01530 0.02354 0.03125 0.04394 0.00250 0.00503           
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                           Table 5: Simulation results for blend IV. 
 

   BIAS   RMSE   D 
          

          

                                       β
3
                       β

2
                    β

1
            β

3             β2             β1
            D-abs         D-max 

          

MLE 50 0.01489 0.00700 0.02174 0.16571 0.10872 0.22069 0.00195 0.00343 

OLS  0.00400 0.01479 -0.06106 0.17962 0.13645 0.26658 0.00444 0.00866 

WLS  0.00693 0.01036 0.05283 0.18171 0.12481 0.26108 0.00521 0.00985 

KE  -0.03799 0.04998 0.01203 0.18288 0.15538 0.34980 0.02420 0.03626 

Bayes[1]  0.02809 -0.07554 0.14325 0.07443 0.08300 0.16073 0.03076 0.04789 

 

MLE 100 0.00361 0.00600 0.00997 0.12082 0.08149 0.15551 0.00151 0.00296 

OLS  0.00684 0.00412 -0.03521 0.12944 0.09419 0.19406 0.00312 0.00594 

WLS  0.00755 0.00319 0.04587 0.12944 0.08405 0.18159 0.00371 0.00588 

KE  -0.01509 0.02173 0.00675 0.13063 0.10159 0.25389 0.01033 0.01557 

Bayes[1]  0.01764 -0.03515 0.01081 0.03760 0.04162 0.07287 0.02707 0.04052 

 

MLE 150 0.00181 0.00455 0.00652 0.10163 0.06686 0.12471 0.00124 0.00237 

OLS  0.00729 0.00045 -0.02877 0.10351 0.07556 0.15601 0.00296 0.00519 

WLS  0.00673 0.00114 0.03344 0.10472 0.06868 0.15078 0.00305 0.00577 

KE  -0.00622 0.01111 -0.00322 0.10385 0.07907 0.19582 0.00479 0.00686 

Bayes[1]  -0.1629 -0.04159 0.04551 0.03186 0.06761 0.05407 0.01492 0.02133 

 

MLE 300 0.00185 0.00185 0.00529 0.06910 0.04585 0.09076 0.00055 0.00104 

OLS  0.00310 0.00082 -0.00781 0.07340 0.05292 0.11279 0.00086 0.00162 

WLS  0.00004 0.00353 0.03029 0.07259 0.06733 0.10194 0.00261 0.00432 

KE  -0.00493 0.00691 0.00452 0.07420 0.05545 0.14147 0.00340 0.00528 

Bayes[1]  -0.05537 0.05565 0.04286 0.02937 0.06011 0.02224 0.00832 0.01181 
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Table 6: The values of estimators A
* 
and W

* 
under failure data. 

 

Method  ̂   ̂   ̂  A
* 

W
* 

MLE
[2] 

3.58192 16.68893 3.49883 0.10143 0.95305 

OLS 2.08640 1.91379 3.84051 0.14925 1.29159 

WLS
[1] 

3.29007 17.14852 4.04150 0.07763 0.76775 

KE 2.23554 2.79716 4.02079 0.11108 1.03033 

Bayes
 

3.66073 16.63422 3.13238 0.11274 1.03604 
 

 

Table 7: The values of estimators A
* 
and W

* 
under service data. 

 

Method  ̂   ̂   ̂  A
* 

W
* 

MLE
 

4.93789 23.12561 2.35843 0.21150 1.28230 
OLS 3.29260 7.85586 2.49817 0.20402 1.23969 

WLS
[1] 

3.31252 9.75011 2.64020 0.18030 1.09682 

KE 1.79988 1.58316 2.60220 0.28872 1.75321 

Bayes
[2] 

4.67315 22.49038 2.50013 0.19713 1.19580 
 

 

Table 8: Competitive models. 

 
N Model Abbreviation Author 
1 Lomax Lo Lomax (1954) 

2 Exponentiated Lo ExpLo Gupta et al. (1998) 

5 Beta Lo BLo Lemonte and Cordeiro (2013) 

6 Gamma Lo GamLo Cordeiro et al. (2015) 

7 Transmuted Topp-Leone Lo TTLLo Yousof et al. (2017) 

8 Reduced TTL Lo RTTLLo Yousof et al. (2017) 

9 Odd log-logistic Lo OLLLo Altun et al. (2018a) 

10 Reduced OLL Lo ROLLLo Altun et al. (2018a) 

11 Reduced Burr-Hatke Lo RBHLo Yousof et al. (2018) 

13 Proportional reversed hazard rate Lo PRHRLo - 

14 Special generalized mixture Lo SGMLo Chesneau and Yousof (2021) 
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Table 9: MLEs and SEs for failure times data. 

         Model            Estimates  

            
OBLo(        )  3.54705 30.65354 4.11768  

       (0.31125) (53.27151) (1.66229)  

TTLLo(          ) -0.80752 2.47662 (15608.21) (38628.32) 

       (0.139601) (0.5418) (1602.366) (123.9362) 

BLo(          )   3.60359 33.63866 4.8307011 118.83731 

       (0.61872) (63.71451) (9.238202) (428.9271) 

PRHRLo(        ) 3.74×10
6 

   4.708×10
-1 

4.5×10
6 

 

 1.03×10
6
 (0.000012) 37.1468  

RTTLLo(        ) -0.84732 5.52060 1.15682  

       (0.10011) (1.1848) (0.0959)  

SGMLo(        ) -1.04 × 10
-1 

9.83 × 10
6 

1.20 × 10
7 

 

       (0.12231) (4843.3) (501.04)  

ROBLo(        ) 3.54792 30.63742 0.24294  

       (0.3141) (55.8404) (0.1026)  

OLLLo(        ) 2.32640 (7.18 × 10
5
) (2.34×  10

6
)  

       (2.14 × 10
- 1

) (1.20 × 10
4
) (2.60 × 10

1
)  

GamLo(        ) 3.58761 52001.5 37029.7  

       (0.5133) (7955.1) ( 81.165)  

ExpLo(        )  3.62611 20074.50 26257.7  

       (0.6237) (2041.83) (99.742)  

ROLLLo(     )  3.890563 0.57315   

       (0.36523) (0.0194)   

RBHLo(     )   1080175.1 51367189.2   

       (983309.2) (232312.2)   

Lo(     )    51425.352 131789.84   

       (5933.494) (296.1194)   
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Table 10:  ̂ and goodness-of-fits statistics for failure times data. 
           

         

Model  ̂ AIC CAIC BIC HQIC A
*
 W

*
  

OBLo -134.3584 274.7169 275.0169 282.0093 277.6484 0.9444 0.1005  

OLLLo -134.4235 274.8470 275.1470 282.1394 277.7785 0.9487 0.1009  

ExpLo -141.3997 288.7994 289.0957 296.1273 291.7469 1.7435 0.2194  

GamLo -138.4042 282.8083 283.1046 290.1363 285.7559 1.3666 0.1618  

BLo -138.7177 285.4354 285.9354 295.2060 289.3654 1.4084 0.1680  

Lo -164.9884 333.9767 334.1230 338.8620 335.9417 1.3976 0.1665  

ROLLLo -142.8452 289.6904 289.8385 294.5520 291.6447 1.9566 0.2554  

SGMLo -143.0874 292.1747 292.4747 299.4672 295.1062 1.3467 0.1578  

PRHRLo -162.8770 331.7540 332.0540 339.0464 334.6855 1.3672 0.1609  

RTTLLo -153.9809 313.9618 314.2618 321.2542 316.8933 3.7527 0.5592  

TTLLo -135.5700 279.1400 279.6464 288.8633 283.0487 1.1257 0.1270  

RBHLo -168.6040 341.2081 341.3562 346.0697 343.1624 1.6711 0.2069  
           

 

Table 11: MLEs and SEs for service times data. 
 

  
 
 

 

 Model   Estimates       
 

           

           

 OBLo(        ) 2.35846   22.97197  4.92505     
 

   (0.24194)   (41.7776)  (3.2902)     
 

 PRHRLo(        ) 1.60 × 10
6
  3.93 × 10

-1
 1.31 × 10

6
   

 

   2.02 × 10
3
  0.0004 × 10

-1 
0.94 × 10

6
   

 

 RTTLLo(        ) -0.67150 2.74497  1.01238     
 

   (0.18747) (0.6697)  (0.11412)    
 

 ROBLo(        ) 2.358364 23.13999   0.20245     
 

   (0.24133) (41.1819)   (0.1325)     
 

 OLLLo(        ) 1.664194      6.34 × 10
5
  2.02 × 10

6
   

 

   (1.82 × 10
-1

)      (1.73 × 10
4
) 7.23 × 10

6
   

 

 ROLLLo(     ) 2.372334 0.691091        
 

   (0.26825) (0.04492)        
 

 RBHLo(     ) 1405552.3      53203423.4       
 

   (422.005) (28.5232)        
 

       Lo(     )  99269.782 207019.3        
 

   (11863.51) (301.237)        
 

             

             



 

 

 

 

 

 

 

104                                     International Journal of Statistical Sciences, Vol. 21(2), 2021 

 

 

Table 12:   ̂  and goodness-of-fits statistics for the service times data.  

Model  ̂   AIC CAIC BIC HQIC A
*
 W

*
 

OBLo -104.4258 214.8517 215.2584 221.2811 217.3804 1.2820 0.2115 

OLLLo -104.9041 215.8082 216.2150 222.2376 218.3369 0.9424 0.1545 

ROLLLo -110.7287 225.4573         225.6573 229.7436 227.1431 2.3472 0.3908 

PRHRLo -109.2986 224.5973 225.004 231.0267 227.126 1.1264 0.1861 

RTTLLo -112.1855 230.3710 230.7778 236.8004 232.8997 2.6875 0.4532 

Lo -109.2988 222.5976 222.7976 226.8839 224.2834 1.1265 0.1861 

RBHLo -112.6005 229.2011 229.4011 233.4873 230.8869 1.3984 0.2316 

 

 

 

 


