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Abstract 

Teenage pregnancy is an alarming concern in South Africa, as it potentially 

contributes to the life-threatening disease, HIV, in the young population. Communities in 

poor villages are hit hard by this problem. Statistics South Africa reported that the 

total yearly cases of teenage pregnancy has reduced. This work investigated this yearly 

reduction using 2011-2015 pregnancy census data of female teenagers at Mpunkunyoni, 

KwaZulu-Natal in South Africa. Apart from the census year effect, this paper accounted for 

the differences and similarities generated by female teenagers while correcting for the 

effects of their characteristics. The data were subjected to a generalized linear mixed 

model, and candidate parsimonious models were attained using the likelihood ratio test 

and a mixture of chi-squares while the model selection was carried out using the Akaike 

information criterion. There were no significant differences due to female teenagers while 

correcting for their age and census year effects. Although there was a tendency for teenage 

pregnancy risk to decrease over the years, this risk is higher for older teenagers. 

Keywords: Cluster-Specific Prediction; Generalized Linear Mixed Model; Generalized 

Linear Model; Variance Components; Teenage Pregnancy. 
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0. Tribute to Sinha Brothers 

We the authors of this paper feel very much privileged and honored to be able to 

contribute to this special issue of Statistics and Applications. I, second author 

Yehenew Kifle, is very much fortunate to have come in contact with the world 

renowned twin Statisticians, the Sinha brothers, especially Professor Bimal K. 

Sinha, with whom I share a very close bond. His consistent advice, support and, 

above all, his unbounded energy have been highly inspirational to me both 

professionally and in my daily personal life. Thanks to his unreserved support, 

dedication and encouragement, a number of African Universities have benefited 

from the great work of Dr. Bimal Sinha via the African International Conferences. 
 

1. Introduction 

The choice of teenage pregnancy data is motivated by the fact that teenage 

pregnancy, defined as pregnancy/birth between ages 13 and 19, inclusive, is an 

alarming social concern in South Africa (Nguyen et al., 2016). Birdthistle et al. 

(2019) indicated that HIV among women is increased by young teenagers who 

contribute 6.5 cases per 100 person-years in 2005. According to Statistics South 

Africa (StatsSA), previously disadvantaged villages with poor communities are 

mostly affected (StatsSA, 2014). Between 2018 and 2019, South Africa recorded 

an increased teenage pregnancy rate in several part of the country. Recent data 

showed that teenage pregnancy crossed 60% in South Africa; where 17 years 

and younger contributed 34,587 births of which 688 were girls younger than 

10-years (Francke, 2021). Teenage pregnancy is also a burdening issue around the 

world but mostly in developing countries in Africa (Worldbank, 2019). In 2019, 47 

countries have the rate of teenage pregnancy higher than South Africa, with Niger 

being the highest with 180 per 1,000 women ages 15-19. Other countries above 

South Africa but outside Africa were, for example, Venezuela, Ecuador, etc. 

The problem of teenage pregnancy can be influenced by the families which they 

live. Therefore, it is of substantial interest to study the impact that families, as 

well as areas, have on the teenage pregnancy status. Assessing this impact sheds 

some light on how family practices generate differences in pregnancy statuses 

between and within families. Moreover, the impact of areas on pregnancy statuses 

can explain the geographic variation between and within villages. For these 
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important reasons, teenage pregnancy, like other social and health issues, cannot be 

addressed by just examining the effects of individual characteristics or by merely 

averaging within each cluster attribute. In statistical literature, mixed models are 

recommended to account for the nested structure of the data. 

Many data structures in social and health sciences are naturally nested (Zumbo and 

Chan, 2014). Often they involve longitudinal, nonlinear outcome data or both. 

Although generalized linear models (GLMs) are known to handle outcome data that 

follows an exponential-family distribution, these models do not account for 

correlation among observations data (Molenberghs and Verbeke, 2005). This is 

because the GLM assumes identically and independently distributed data 

(Molenberghs and Verbeke, 2005). However, data scientists and researchers 

commonly neglect clustering during study planning, data collection and analysis 

(Luke, 2004). This means that cluster-level information is not collected or 

information is often aggregated at the cluster level for analysis, thereby reducing 

the information (Luke, 2004). Aggregation of cluster information allows the use 

of multiple linear regression which assumes that all regression coefficients are 

equal for all cluster attributes; hence violating the assumption of uncorrelated 

errors (Hox and Roberts, 46 2011). 

Generalised linear mixed models (GLMMs) have presented significant 

accountability to explore information that comes from populations with nested data 

structures (Goldstein, 2011). These models have gained popularity since the mid-

1980s (Goldstein, 2011) because of their ability to model the effect of individuals 

and contextual information simultaneously. Although these models were first 

applied in educational and sociological studies, they can be applied in many study 

areas (Wang et al., 2011). Other application areas include, but are not confined to, 

psychology, public health, and economics (Bini et al., 2009). These models are 

advantageous because they overcome the assumption of independence of 

observations as well as the correction of overestimation of type-I error (Wang et 

al., 2011). Statistically, this means that intra-class correlation is non-zero; hence 

single-level models are inappropriate to analyze nested data (Hox and Roberts, 

2011). Moreover, these models can handle unbalanced data. 

In the next section, the data used in this study is described and the 

relationships between teenage pregnancy status and other attributes of the data are 

explored. After that, we discuss the specification of the model for teenage 

pregnancy, accounting for nesting of teenagers in families and interpret the results 
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of model building. Lastly, we present the discussions and conclusions from the 

analysis. 

2. Teenage pregnancy data 

In this study, the census data from the health and demographic surveillance 

system are used. The data are collected and provided by the Africa Health 

Research Institute (AHRI), KwaZulu-Natal (KZN) in South Africa. The data 

consist of the population of female teenagers whose pregnancy status was 

observed during the census years 2011 to 2015 in Mpukunyoni rural area, KZN. 

These are 11544 females aged 13 to 19, born between 1992 and 2002, inclusive. 

For each year, it is reducing whether or not the teenager was pregnant. The data 

are however unbalanced in the sense that we do not have an equal number of 

observations for all teenagers (Steele, 2008), as e.g. a female who was 19 years 

old in 2011 would not be included in the remainder of the census years, while a 

13-year old female who was observed in 2015 would not have been observed in 

the previous census years. Furthermore, some female teenagers might not have 

been observed for some census years because of death, migration, or other 

reasons. Next, female teenagers (2775) were observed for all the five census 

years, followed by those observed once (2410), twice (2312), thrice (2075) and 

four times (1972). In total, there are 35022 measurements of teenage pregnancy 

for the 11544 female teenagers. Thus, measurements of teenage pregnancy (level 

1) are nested within female teenagers at level 2. 

These measurements record pregnancy status, denoted by ps, which is the 

response variable of interest. Pregnancy status takes the value 0 (no) or 1 (yes) 

that respond to whether a female teenager was pregnant. There are four covariates 

of which one is a measurement of occasion, denoted by year, that records values 

0, 1, 2, 3 and 4, representing census years 2011, 2012, 2013, 2014 and 2015, 

respectively. The remaining three covariates are characteristics of female 

teenagers. The first one is age, denoted by age = 0,1,2,3,4,5,6; where 0 is the 

reference age representing a 13-year old female. The second one is the number of 

households that a female belongs to, denoted by hm = 0,1,2,3; where 0 is the 

reference category representing one household membership. The third covariate is 

the number of pregnancies the female had before the time of observation, denoted 

by pb = 0,1,2,3. 
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The observed proportion of teenage pregnancy is approximately 0.0245 for an 

average female teenager. For the purpose of visualizing the relationship between 

ps and each covariate, observed proportions were averaged per covariate levels. 

After that, we computed the logit of the resulting proportions (logit(proportion)), 

which allows assessing the functional form using scatter plots with a fitted loose 

curve (Figure 1). 

Both age in Figure 1B and the number of previous pregnancies pb in Figure 1D 

indicated a positive relationship with the logit of the proportions of ps, while year 

in Figure 1A showed a decreasing trend. In addition, Figures A, B, and D show a 

linear functional form while Figure 1C is non-linear. The relationship between the 

logit of proportions of ps and hm seems to be a 2-degree polynomial. For 

simplicity, the model building will treat hm as a binary variable indicating 

whether a female belongs to more than one household, where 0 indicates no and 1 

indicates yes. 

3. Generalized linear mixed models for binary data 

3.1. Model specification 

Generalized linear mixed models (GLMMs) are extensions of generalized linear 

models (GLMs) that add a random cluster effect to account for the correlation of 

the data (Molenberghs and Verbeke, 2005). 

In the context of GLMs, the response variables    of measurements from 

individuals  (         ) are assumed to be an independent set that is related to 

a  -dimensional vector of the covariate,   . These   ’s are assumed to have a 

probability density function (PDF) that belongs to an exponential family, such that 

 (  |  )     (  
  ) , where E(yi|xi) is the expected value of yi given the 

covariates   ,   is a p-dimension vector with fixed unknown coefficients and µ is 

the mean (Molenberghs and Verbeke, 2005). A link function h(·) is chosen such 

that  ( (  |  ))     ( (  |  ))    
  . 

In this setting, response variables   ’s are assumed to be an independent set 

following a Bernoulli distribution with parameter   . Thus,  (  |  )  

   *     (
  

    
)     (    )+  (Czepiel, 2002). The logit link function, 

     ( )     (  (   )) can be utilized for binary outcome data to map the 

logistic regression model (LRM) to a linear predictor (Rabe-Hesketh and 

Skrondal, 2008). That is, Model (1a),  
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 (    |  )

   (    |  )
]    

   
 

(1a) 

where  (    |  )     is the probability of success and      . The formula 

for predicting  (    |  ) is then given by  

 (    |  }  
   [  

  ]

     [  
  ]

  

 

(1b) 

 

Regression coefficients   are estimated using the log likelihood function as  

 ( |    )  ∑  (  
  )[    (     

  )]

 

   

  

 

(1c) 

 

In a case of a two-level multilevel data setup where responses vary within a 

specific cluster, we let          represent the level 1 units and           

denote the level 2 cluster units. 

The GLMM assumes that     are independent, and a cluster-specific regression 

parameter is assumed to have a PDF,  (   |     )     [   [        (   )]  

 (     )], that belongs to an exponential family.     is a natural parameter that 

can, through a link function, be represented as a linear predictor ηti while   is a 

scalar parameter (Czepiel, 2002; Molenberghs and Verbeke, 2005). Functions 

 ( ) and  (   ) are all known. Also of interest is the population mean, which is 

estimated by a linear predictor with both the fixed regression parameters   and 

cluster-specific random effects   . This equation is written as  (   )      
  

     

     , where  ( ) is some known link function for two vectors     and     

with covariate values. The term    is a vector of random effects that follow a 

multivariate normal distribution with a vector of zero means and variance-

covariance matrix   . Likewise,     is a linear predictor. The expected value of 

the response variable given the random effect and the covariates, is     
 (   |      ). 

For the teenage pregnancy analysis     represent the pregnancy status of teenager 

at time t. Yti is assumed to follow a Bernoulli distribution with parameter    . A 

logit link function,      (   )     [    (     )]  isused to map the binary 

response to a linear predictor function  ( ). That is,  

     (   )     [    (     )]     
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where πti in this case, is the probability of teenage pregnancy that are also 

represented as  (   |      ). Model (2a) is a two-level GLMM since the response 

measurements are clustered within one cluster. The probabilities    , given by  

    
   [    

       

 ]

     [    
       

 ]
 

 

(2b) 

 

are subject-specific estimates of probability of teenage pregnancy. For a random 

intercepts model, Model (2a) reduces to  

     (   )      
     

 

(2c) 

 

where     (    ( )
 ). The population-averaged probability of teenage pregnancy 

is then given by  

   ∫
   [    
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     [    
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(2e) 

 

and the likelihood function used to estimate   and   ( )
 of the random effect υi is 

given by Equation (2e). This function  (    ( )
 |   )  is evaluated using the 

adaptive quadrature or Laplace approximation approaches. However, in this paper, 

we use adaptive quadrature approximation. 
 

3.2. Variance components 

Although there are several ways to examine the variance components of mixed 

models, our study focused on the variance partition coefficient (VPC) and intra-

class correlation coefficient (ICC). The VPC reports the proportion of the 

response variance that lies at each level of the model hierarchy, while the ICC 

reports the expected degree of similarity between responses within a given cluster. 

Consider Model (2c) with the fixed intercept (β0) and m random intercepts    
( )

. 

Thus,  

       ∑   
( )
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where   is the cluster index, for example,       corresponds to teenagers,       

to families. The random intercepts    
( )

 are assumed to be normally distributed 

with mean zero and variance    ( )
 . The level 1 errors for a logistic regression 

model are assumed to have variance equal to     ; hence, the total variance is 

calculated as      ∑    ( )
  

   . The VPCs and ICCs for Model (3a) are 

respectively calculated as  

    
( )  

   ( )
 

   ( )
  ∑    ( )

  
   

 

 

(3b) 

 

    
( )  

∑    ( )
  

   

   ( )
  ∑    ( )

  
   

 

 

(3c) 

 

where             is the hierarchy level and    ( )
      . In order to 

evaluate the importance of the female cluster, we used a mixture chi-square (MI-

CHI) likelihood ratio test (Verbeke and Molenberghs, 2009, Chapter 6). Model 

selection for both the GLM and GLMM was made using both the AIC value and 

the likelihood ratio test (LRT) for nested models. The AIC value is calculated 

using the formula         [ ( )]    , where   is the number of estimated 

coefficients (Akaike, 2011). A lower AIC value indicates a better fit. 
 

4. Analysis and Interpretation of Results 

4.1. Model building and selection 

This section presents the model building using both the GLM and GLMM to 

describe the probability of teenage pregnancy. GLM intends to estimate the effect 

of covariates on the log-odds of teenage pregnancy, whereas GLMM estimates the 

effect of both the covariates and account for within female cluster correlation. In 

both models, we use the notations      ,     ,     and     to denote the fixed 

effects of year, age, hm and pb. Furthermore, the effects of the interaction of year 

and other covariates (year × hm and year × pb) are denoted by      and     , 

respectively. 

To evaluate the importance of the effect of covariates mentioned above, we use 

LRT on nested models. In the GLMM, we also check whether the effect of the 

female cluster is significant, using MI-CHI. We then consider the AIC value to 

decide on a better fit within the fitted model families (GLM or GLMM). A 

summary of the model building exercises for the GLM and GLMM is given in 

Table 1, which shows the results of the competing models and the estimates. With 
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a purpose to achieve a more parsimonious mean structure, the covariates are 

excluded one by one. 

Model (5) is the best model according to the LRT of fixed effects and the AIC 

value. The inclusion of covariates hm or pb does not improve the model. Both hm 

and pb, and any of the presumed interactions do not significantly affect teenage 

pregnancy status. For prediction purposes, Model (5) can be written as Equation 

(4a). Equation (4a) suggests that the probability of teenage pregnancy for a 13-

year-old female teenager in 2011 and had no previous pregnancy is 

   (      )     (      )        , with 95% confidence interval 

(0.00307,0.00498). The odds of teenage pregnancy for a 13-year-old female 

teenager in 2011 will increase by    (     )  for each additional year to the 

female teenager’s age. On the other hand, the odds are expected to reduce by 

exp(0.21) for each additional census year; hence the corresponding probabilities in 

2012, 2013, 2014, 2015 are 0.0032, 0.0026, 0.0021 and 0.0017, respectively. 

Table 1: Maximum likelihood estimates of GLMs and GLMMs that predict log 

odds of teenage pregnancy. 
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Table 1 also presents the results from fitting a GLMM to the data, thereby 

accounting for the longitudinal nature of the measurements. The results show that 

even in the case of GLMM, at 5% level of significance, the effects of hm and pb 

are not significant. We also observe that the estimated standard errors of the fixed 

effects in GLMs are equal to those of the GLMMs. Comparing with Model (3) 

with Model (8), it can be observed that the probability of teenage pregnancy does 

not depend on the female cluster when we correct for all covariates. However, 

exclusion of    and both    and    in Models (9 and 10), respectively show 

some variation in the log odds of teenage pregnancy status. In the case of Model 

(9), the estimates are still similar to the Model (4), also suggesting no variation 

due to the female cluster. On the contrary, Model (10) shows slight differences in 

the estimates due to the inclusion of the effect of the female cluster. Using the MI-

CHI test, the female cluster random intercepts    ( )
  in Model (10) is not 

significant at 5% level of significance with p-value equal to 0.2707, implying that 

for our data, it is not important to account for the female clustering. Also, the 

random intercept has not improved the model fit of Model (5), but rather 

worsened it by a small margin of about 0.6 AIC value. 

Given the resulting insignificance of the female cluster, the predictions from 

Model (10) are equivalent to those of Model (5). Not neglecting the findings on 

the teenage female cluster, our study further used Model (10) estimate, written as 

Equation (4b) to make female-specific prediction when both census year and age 

are corrected for. In Equation (4b),    
( )

 is normally distributed with mean = 0 and 

variance = 0.11. The estimated fixed intercept of -5.599, deduce that the 

probability for teenage pregnancy for a 13-year old female in 2012 is 

   (      ) (     (      ))        . The magnitude of the effect of 

census year is equal to -0.211, which means that for each one year increase to a 

census year, the odds of teenage pregnancy is expected to decrease by 

exp(−0.211) = 0.8098 when controlling for the female difference. 

We also computed the VPC and ICC. The magnitude of both VPC and ICC 

suggests that 3.25% of the variation in teenage pregnancy is due to the female 

cluster. Thus, the correlation of pregnancies within females after correcting for 

their ages and census year equals to 0.0325, which is very limited. 

In addition to the prediction, we further removed age effect from Model (10) in 

order to illustrate the importance of including the cluster effect when available 
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covariates do not explain the differences in individuals’ responses. The estimates 

of this model were not presented in this paper; however, its equation together with 

its counterpart GLM without the random effect were    ̂           

                
( )

 and  ̂                     . The variance,    ( )
 , of 

the random intercept,    
( )

, was equal to 0.3505 and significant with a p-value of 

0.033, suggesting that the female cluster is important. That meant 9.63% of the 

variation in teenage pregnancy is accounted for by the female cluster. While the 

effect of census year is similar for both the GLM and GLMM, the fixed intercepts 

were different compared to the models that account for the age. This difference 

supports the significance of the effect of the female cluster. 

Probability predictions 

To predict and compare probabilities of the models, we used the two Equations  

 ̂                             (3b) 

 ̂                                    
( )

 

 

(3c) 

 

to produce the plots in Figure 2. For the top two figures, we predicted the 

probabilities for the whole teenage population and averaged these within census 

year in Figure 2A and age in Figure 2B. The population averaged lines 

representing GLM and GLMM probability predictions were similar for both 

census year and age, justifying that the GLM was sufficient to model teenage 

pregnancy data for this study. These lines tie with the observed proportions of 

teenage pregnancy. 

5. Discussion and Conclusion 

In this work, we observed a hierarchical data structure of teenage pregnancy 

which was fitted using both the GLM and GLMM with a logit link. This implied 

that the fitted logit GLM assumed that measurements of teenage pregnancy are 

independent. The variance component estimates indicated that the female cluster 

has no effect on teenage pregnancy status after correcting for the effect of census 

year and age of the female. This means that the female cluster did not generate 

differences in teenage pregnancy status; hence, it would be sufficient to assume 

independence of measurements for the data used in our study. This is also 

observed for the estimated fixed effects which were similar for both the best fit 
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GLM and GLMM. In addition, this work has shown that the risk of teenage 

pregnancy reduces by census year. 

For demonstration purposes, this work further illustrated the importance of 

assessing the female cluster by removing the effect of age from the final model. 

The resulting model indicated that there is a need to consider the effect of the 

female cluster, thereby suggesting some differences and similarities of the risk of 

teenage pregnancy due to female cluster. Of course, this is expected since age 

explains most of that variation, and it is the female demographic characteristic. 

Given that this work has not taken into account the missingness of teenage 

pregnancy status that exists in our data, further studies could be conducted that 

incorporate reasons for missingness that could be provided by Africa Health 

Research Institute. Furthermore, missingness reasons are sometimes unknown; 

hence further studies could also investigate missingness mechanism through 

sensitivity analysis techniques that are discussed in Molenberghs and Verbeke 

(2005, chapters 26-32). Figures 
 

 

Figure 1: The relationship between the logit of observed teenage pregnancy 

proportions with covariates 
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Figure 2: Teenage pregnancy probabilities predictions (Marginal). 
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