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Abstract

This paper proposes a new adaptive algorithm for robust principal component anal-
ysis (PCA). The proposed method is formulated based on robust estimators of the
mean vector µ and the covariance matrix Σ of multivariate normal distribution. The
robust estimators for µ and Σ are obtained by the minimum β-divergence method
(Mollah et al. , 2008). An appropriate value of the tuning parameter β controls
the trade-off between robustness and efficiency of the estimators. Therefore, we dis-
cuss the selection procedure for the tuning parameter β in this paper also. Finally,
we demonstrate the performance of the proposed method in a comparison of the
classical method and a most recent adaptive robust PCA algorithm based on the
minimum Ψ-principle (Higuchi and Eguchi , 2004). Simulation results show that
the proposed method improves the performance over the classical PCA algorithm
as well as the minimum Ψ-principle based adaptive robust PCA algorithm.

Keywords and Phrases: Principal component analysis, Multivariate normal dis-
tribution, Minimum β-divergence method, β-selection by cross validation and Ro-
bustness.
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1 Introduction

Principal component analysis (PCA) is one of the most popular statistical technique
for processing, compressing, visualizing and reducing dimensionality of multivariate
data. It is widely used in statistical signal processing, neural computing and social
science. Principal components (PCs) are also used as the inputs of several statistical
procedures including regression analysis, cluster analysis, factor analysis and indepen-
dent component analysis. It depends solely on the covariance matrix Σ of sample
observations. Therefore, it does not require any distributional assumption. How-
ever, principal components derived for multivariate normal populations have useful
interpretations in terms of the constant density ellipsoids. Further, inferences can
be made from the sample components when the population is multivariate normal
(Jolliffe, 2002; Johnson and Wichern, 2002). In general, PCA aims to extract the
most informative q-dimensional output vector yj = (y1j , y2j , ..., yqj)

T from input vec-

tor xj = (x1j , x2j , ..., xmj)
T of dimension m ≥ q whose components are assumed to be

linearly correlated of each other. This is achieved by learning the m × q orthogonal
matrix W = [w1 w2 ... wq]m×q which relates xj to yj by

yj =W T (xj − µ), j = 1, 2, . . . , n (1.1)

such that components of yj are mutually uncorrelated satisfying the order of the
variances according to the component number of yj (Higuchi and Eguchi , 2004).
In the context of off-line learning, µ and W are directly computed respectively by
the sample mean vector µ̂ and the q dominant eigenvectors of the sample covariance
matrix Σ̂ as defined by

µ̂ =
1

n

n∑
j=1

xj , (1.2)

and

W = eigen(Σ̂). (1.3)

where

Σ̂ =
1

n

n∑
j=1

(xj − µ̂)(xj − µ̂)T , (1.4)

such that

W T Σ̂W = diag(λ1, λ2, ..., λq) (1.5)

satisfying λ1 > λ2 > ... > λq, where λi is the variance of ith principle component. It

should be noted here that the sample mean vector µ̂ and the covariance matrix Σ̂ as
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defined by equations (1.2) and (1.4) are also the minimizer of Kullback-Leibler diver-
gence or equivalently the maximizer of likelihood function based on the multivariate
normal distribution N(µ,Σ). However, it is well known that the estimation of the
mean vector µ and the covariance matrix Σ as defined by equations (1.2) and (1.4)
are very much sensitive to outliers. Therefore, classical PCA based on (1.2) and (1.4)
produces misleading results in the presence of outliers.
There are several robust PCA algorithms based on robust estimation of the mean
vector µ and the covariance matrix Σ including Campbell (1980) and Croux and
Haesbroeck (2000). However, most of them are not adaptive algorithms. It is well
known that the performance of classical PCA algorithm is better than any robust
PCA algorithms if input vectors come from multivariate normal distribution and the
input dataset is not contaminated by outliers. If dataset is contaminated by outliers,
then any robust estimation procedure would be better than classical estimating pro-
cedure for PCA. On the other hand, it is very difficult to know in advance whether
a dataset is contaminated by outliers or not. In this situation, an adaptive robust
PCA method would be better than the non-adaptive robust method, since the adap-
tive method reduces to the classical PCA algorithm by selecting the tuning parameter
using cross-validation in the absence of outliers (Higuchi and Eguchi, 2004). In this
paper, an attempt is made to propose a new adaptive robust PCA algorithm based on
robust estimation of the mean vector µ and the covariance matrix Σ of multivariate
normal distribution by the minimum β-divergence method. We observe that the pro-
posed method is more robust than the most recent adaptive robust PCA algorithm
based on minimum Ψ-principle (Higuchi and Eguchi, 2004).
We discuss the adaptive PCA algorithms in section 2, where we summarize the min-
imum Ψ-principle based adaptive robust PCA algorithm in the sub section 2.1 and
introduce the proposed method in the sub section 2.2. The performance of the pro-
posed method is investigated using both synthetic and real datasets in section 3 and
make a conclusion of this study in section 4.

2 Adaptive Robust PCA

An adaptive robust PCA algorithm controls the trade-off between robustness and
efficiency of the estimators based on the value of the tuning parameters. It reduces to
the classical PCA algorithm in the absence of outliers. For comparison of our proposed
method with the recently proposed adaptive robust PCA algorithm based on minimum
Ψ-principle (Higuchi and Eguchi, 2004), we introduce this method and our proposed
method in the sub sections 2.1 and 2.2, respectively.
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2.1 Adaptive Robust PCA by Minimum Ψ-Principle

The classical PCA is characterized by minimizing the empirical loss function

1

n

n∑
j=1

z(xj ,µ,W ) (2.1)

with respect to µ and W , where

z(xj ,µ,W ) =
1

2

{
∥xj − µ∥2 − ∥W T (xj − µ)∥2

}
(2.2)

or half the squared residual distance of (xj −µ) projected onto the subspace spanned
by the columns of W (Hotelling, 1933).
Higuchi and Eguchi (2004) proposed a variant of this classical procedure for adaptive
robust PCA by minimizing the empirical loss function

LΨ(µ,W ) =
1

n

n∑
j=1

Ψ(z(xj ,µ,W )) (2.3)

where Ψ(z) is assumed to be a monotonically increasing. Various choices of Ψ’s yield
various procedures for PCA. As typical examples, the identity function Ψ0(z) = z
reduces to the classical PCA and the sigmoid function

Ψ1(z) = log
1

1 + exp{−λ(z − η)}
(2.4)

formulate the self-organizing rule for robust PCA, where λ and η are tuning param-
eters, referred to as the inverse temperature and saturation value, respectively (Xu
and Yuille, 1995). In general, Ψ is interpreted as a generic function to give the loss
function LΨ. The minimization of LΨ in equation (2.3) is referred as minimum psi
principle generated by Ψ which we call minimum Ψ-principle for convenience of pre-
sentation. Using minimum Ψ-principle, Higuchi and Eguchi (2004) found that the
minimizer (µ̃, W̃ ) of LΨ(µ,W ) satisfies the stationary equations

µ̃ =
n∑

j=1

hj(µ̃, W̃ )xj , (2.5)

and

W̃ = eigen(S(µ̃, W̃ )) (2.6)

where

hj(µ,W ) =
ψ(z(xj ,µ,W ))∑n
j=1 ψ(z(xj ,µ,W ))

(2.7)
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and

S (µ,W ) =
n∑

j=1

hj (µ,W ) (xj − µ)(xj − µ)T (2.8)

with ψ(z) = (∂/∂z)Ψ(z). The equilibrium point (µ̃, W̃ ) is expressed by the weighted
mean and the covariance matrix, where the weight function hj depends upon µ̃ and

W̃ , except for the case of ψ(z) = 1, which yields the classical PCA.

2.2 Adaptive Robust PCA by Minimum β-Divergence (Proposed)

The β-divergence between two probability density functions p(x) and q(x) is defined
by

Dβ(p, q) =

∫ [ 1
β

{
pβ(x)− qβ(x)

}
p(x)− 1

β + 1

{
pβ+1(x)− qβ+1(x)

}]
dx, for β > 0,

which is non-negative, that is Dβ(p, q) ≥ 0, equality holds iff p = q, (Minami and
Eguchi , 2002). It measures the discrepancy between two probability density functions
p(x) and q(x) For β −→ 0, it reduces to Kullback Leibler (KL) divergence. That is

lim
β↓0

Dβ(p, q) =

∫
p(x) log

p(x)

q(x)
dx = DKL(p, q). (2.9)

The minimum β-divergence method (Minami and Eguchi , 2002; Mollah et al., 2006)
minimizes the discrepancy between the parametric and non-parametric (empirical)
distributions of a random variable x with respect to the parameters. Mollah et al.
(2007) used minimum β-divergence method to estimate the mean vector µ and the
covariance matrix Σ to robustify pre-whitening algorithm for independent component
analysis (ICA) based on unusual multivariate normal distribution κN(µ,Σ) with κ >
0. It is defined as

(κ,µ,Σ) = argmin
κ′,µ′,Σ′

D(p(x), κ
′φµ′,Σ′(x)),

where φµ,Σ(x) = N(µ,Σ) is the usual multivariate normal distribution with mean
vector µ and covariance matrix Σ. For robust estimation of the usual multivariate
normal distribution, Mollah et al. (2008) also used the minimum β-divergence method.
They minimized the β-divergence between φµ,Σ(x) and the empirical pdf p(x). It is
defined as

(µ,Σ) = argmin
µ′,Σ′

Dβ(p(x), φµ′,Σ′(x))

= argmin
µ′,Σ′

Lβ

(
µ′,Σ′) ,
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where

Lβ (µ,Σ) =
1

β + 1

∫ {
φβ+1
µ,Σ (x)

}
dx− 1

β

∫ {
p(x)φβ

µ,Σ(x)
}
dx.

Then it is obtained that

µ =
Ep [ϕβ(X|µ,Σ)X]

Ep [ϕβ(X|µ,Σ)]
, (2.10)

and

Σ =
Ep

[
ϕβ(X|µ,Σ)(X − µ)(X − µ)T

]
Ep [ϕβ(X|µ,Σ)]− β(1 + β)−(m+2)/2

, (2.11)

where p denotes the empirical distribution p(x) of x and

ϕβ(x|µ,Σ) = exp

{
−β
2
(x− µ)TΣ−1(x− µ)

}
(2.12)

which we call β-weight function. The detail derivation of equations (2.10) and (2.11)
have been discussed in Mollah et al. (2008). The equations (2.10) & (2.11) are solved
iteratively as follows

µt+1 =

∑n
j=1 ϕβ(xj |µt,Σt)xj∑n
j=1 ϕβ(xj |µt,Σt)

(2.13)

and

Σt+1 =

∑n
j=1 ϕβ(xj |µt,Σt)(xj − µt)(xj − µt)

T∑n
j=1 ϕβ(xj |µt,Σt)− β(1 + β)−(m+2)/2

. (2.14)

For β = 0, iterative solutions of (2.13) and (2.14) reduces to the classical non-iterative
solutions as defined by equations (1.2) and (1.4), respectively.
To obtain adaptively robust principal components using equation (1.1), we compute
µ and W by the minimum β-divergence estimators of µ and Σ as obtained iteratively
by equations (2.13) and (2.14). However, the robustness performance of the proposed
method depends on the value of the tuning parameter β. Therefore, we discuss an
adaptive selection procedure for the tuning parameter β by cross validation in the next
sub section 2.2.1. We also discuss the robustness of the of the proposed method in the
sub section 2.2.2.
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2.2.1 β-Selection by K-Fold Cross Validation

To find an appropriate β for the minimum β-divergence estimators, Mollah et al. (2007)
have been used β-divergence with a fixed value β0 of β as a measure for evaluation of
the minimum β-divergence estimators. In this paper, we also use the same measure
for β selection using cross validation (Hastie et al., 2001). To define the measure for β
selection using cross validation, let us split the entire dataset D into K subsets; D(1),
· · · ,D(K) and let D−k = {x|x /∈ D(k)}. Then the measure for β selection can be
defined by

Dβ0 (β) =
1

n

K∑
k=1

Lβ0

(
µ̂β , Σ̂β |x ∈ D(k)

)
, (2.15)

where µ̂β and Σ̂β are obtained by solving equations (2.13) and (2.14) iteratively and

Lβ0

(
µ̂β , Σ̂β |x ∈ D(k)

)
= (β0 + 1)−(m+2)/2

{
det(2πΣ̂β)

}−β0/2
− 1

n(k)β0

∑
x∈D(k)

φβ0

µ̂β ,Σ̂β
(x),

where n(k) is the number of observation in the subset D(k). Then we estimate an
appropriate β by

β̂ = argmin
β

D̂β0 (β)

using ’one standard error’ rule (Hastie et al., 2001). For more discussion about β-
selection by cross validation, please see Mollah et al. (2007).

2.2.2 Robustness

The robustness of minimum β-divergence estimators of µ and Σ of multivariate normal
distribution has been investigated using the influence function (Hampel et al., 1986)
by Mollah et al. (2008). In both equations (2.13) and (2.14), the β-weight function
ϕβ(x|µ,Σ) provides almost zero weight for outlying observations, because outlying
observations are usually far from the the center of the original data point. Therefore,
estimating equations as well as the influence functions becomes bounded for β > 0,
while they are unbounded for β = 0. Thus minimum β-divergence estimators are
B-robust. For detail discussion about the B-robustness of minimum β-divergence
estimators based on influence function, please see Mollah et al. (2008).

3 Numerical Examples

To demonstrate the performance of the proposed method in a comparison of classi-
cal PCA and the adaptive robust PCA based on minimum Ψ-principle (Higuchi and
Eguchi , 2004), we generate two and five dimensional datasets from Gaussian distri-
bution as follows:
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• Two dimensional datasets: We draw a random sample of size 400 from bi-
variate normal distribution N(0,Σ1), where

Σ1 =

(
1.15 0.50
0.50 0.30

)
.

Ḟigure 1a1 represent the scatter plot of this dataset. Then 20, 40, 60, 80, 100
and 120 data points from the random positions are replaced by 20, 40, 60, 80,
100 and 120 outliers ‘+’ so that data contamination rates are 5%, 10%, 15%,
20%, 25% and 30%, respectively. Outlying observations in each case are also
generated from N(µ,Σ), where µ ̸= 0 and Σ ̸= Σ1. Figures 1(a2-a7) show the
scatter plot of these contaminated datasets with contamination rates 5%, 10%,
15%, 20%, 25% and 30%, respectively.

• Five dimensional datasets: We draw a random sample of size 200 from five-
variate normal distribution N(0,Σ2), where Σ2 = diag(8, 6, 1, 0.5, 0.1). Then
30 data points are replaced randomly from the original 200 data points by 30
outliers ‘+’ so that data contamination rate is 15%. Figure 2(upper-triangular)
represents the scatter plot of this contaminated dataset. Again we replace by 60
data points randomly from the original 200 data points by 60 outliers ‘+’ so that
data contamination rate is 30%. Figure 2(lower-triangular) represents the scatter
plot of this contaminated dataset. Here also note that outlying observations in
each case are generated from N(µ,Σ) as before, where µ ̸= 0 and Σ ̸= Σ2.

Table 1: PCA results in the presence of outliers. The notation r12 represents the
correlation coefficient between PC1 and PC2 corresponding to the uncontaminated
observation. The notations λ1 and λ2 in parentheses are the variances of PC1 and
PC2, respectively. The symbol ’*’ indicates the significant correlation at 5% level.
Contamination Classical PCA ψ-Principle Based PCA Proposed PCA
rate (%) r12 (λ1, λ2) r12 (λ1, λ2) r12 (λ1, λ2)

0% 0.00 (1.36, 0.06) 0.00 (1.35, 0.05) 0.000 (1.36, 0.06)

5% 0.78* (1.10, 0.28) 0.05 (1.20, 0.07) 0.000 (1.36, 0.06)

10% -0.74* (1.07, 0.64) 0.08 (1.30, 0.08) -0.001 (1.36, 0.06)

15% -0.82* (0.90, 1.03) 0.10 (1.32, 0.10) 0.01 (1.30, 0.09)

20% -0.82* (0.70, 1.11) -0.57* (1.02, 0.61) 0.07 (1.22, 0.09)

25% -0.83* (0.23, 1.19) -0.87* (0.33, 1.08) 0.08 (1.20, 0.11)

30% -0.84* (0.23, 1.19) -0.85* (0.26, 1.16) 0.11 (1.14, 0.15)

In order to investigate the performance of the proposed method in a comparison of
the classical PCA and a recently developed adaptive robust PCA based on minimum
Ψ-principle, we consider two dimensional datasets in presence of 0%, 5%, 10%, 15%,
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Figure 1: a(1-7) Scatter plot of two dimensional dataset in the presence of 0%, 5%,
10%, 15%, 20%, 25% and 30% outliers, respectively. b(1-7) β selection for the proposed
method using cross validation for datasets as shown in figures a(1-7), respectively. c(1-
7) Scatter plots of first principle component (PC1) and second principle component
(PC2) obtained by classical method with datasets as shown in figures a(1-7), respec-
tively. d(1-7) Scatter plots of PC1 and PC2 obtained by the minimum Ψ-principle
with the same datasets as shown in figures a(1-7), respectively. e(1-7) Scatter plots of
PC1 and PC2 obtained by the proposed method with the same datasets as shown in
figures a(1-7), respectively.
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20%, 25% and 30% (or, 0%-30%) outliers as describe in Figures 1(a1-a7), respectively.
For each of these datasets, we select β by cross validation. Figures 1(b1-b7) show the
cross validation results. We see that appropriate values of β=0, 0.1, 0.1, 0.2, 0.2 and
0.3 for the proposed method in the presence of 0%-30% outliers, respectively. It may
be remind here that the proposed PCA with β=0 is equivalent to the classical PCA.
Figures 1(c1-c7) represent the scatter plot of classical PC1 and PC2 in the presence of
0%-30% outliers, respectively. Figures 1(d1-d7) represent the scatter plot of PC1 and
PC2 based on ψ-principle in the presence of 0%-30% outliers, respectively. Figures
1(e1-e7) represent the scatter plot of PC1 and PC2 based on the proposed method in
the presence of 0%-30% outliers as before, respectively. Table 1 shows the correlation
coefficient (r12) between PC1 and PC2, and their variances λ1 and λ2 for each of three
methods mentioned above in the presence of 0%-30% outliers, respectively. To observe
the PCA results with only uncontaminated observations from a contaminated dataset,
we compute r12, λ1 and λ2 using PC1 and PC2 scores corresponding to uncontami-
nated observations ‘.’ only. From figures 1(c1-e1) in the first column in the absence
of outliers, we observe that there is no significant change in the PC1 scores over the
whole range of PC2, and no change in the PC2 scores over the whole range of PC1 for
all three methods. Also these graphical presentation are satisfied by r12 = 0.000 in
the absence of outliers as given in the second row of table 1 for each of three methods
mentioned above. Thus uncorrelatedness property of PCA is satisfied by PC1 and
PC2 with each of three methods in the absence of outliers. Again, we observe that
Var(PC1) = λ1 > λ2 = Var(PC2) in the absence of outliers as given in the second row
of table 1 for each of three methods. Thus PC1 and PC2 satisfy both uncorrelatedness
and variance properties of PCA with each of three methods in the absence of outliers.
However, in a similar fashion using figures 1(c2-c7), 1(d2-d7), 1(e2-e7) and the values
of r12, λ1 and λ2 as given in the (3-8)th rows of table 1, we observe that PC1 and
PC2 corresponding to the uncontaminated observations based on (1) classical method
don’t satisfy either uncorrelatedness or variance properties of PCA in the presence of
5% or more outliers, (2) minimum ψ-principle don’t satisfy either uncorrelatedness or
variance properties of PCA in the presence of more than 15% outliers, and (3) the
proposed method satisfy both uncorrelatedness and variance properties of PCA in the
presence of all cases (0%-30%) of outliers under consideration. Thus the performance
of the proposed method is better than both classical method and the method of min-
imum ψ-principle in the presence of huge amount of data contamination.
To examine the performance of the proposed method for high dimensional datasets,
we consider five dimensional datasets in the presence of 0%, 15% and 30% out-
liers as viewed in figure 2 based two-dimensional coordinate systems. To obtain
principal components by orthogonal transformation, the true orthogonal matrix is
W = (w1,w2, ...,w5) = I (the identity matrix) for each of five dimensional datasets,
since the true covariance matrix for each these datasets is Σ = diag(8, 6, 1, 0.5, 0.1),

the diagonal matrix. Therefore, an estimate Ŵ = (ŵ1, ŵ2, ..., ŵ5) of W will be good
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Figure 2: Pairwise scatter plot of five dimensional data. (Upper triangular) Scatter
plot of five dimensional data in the presence of 15% outliers ‘+’. (Lower triangular)
Scatter plot of five dimensional data in the presence of 30% outliers ‘+’.
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Figure 3: (a-c) Percentage of total variation (PTV) contributed by the principal com-
ponents in the presence of 0%, 15% and 30% outliers, respectively. (d-f) Cumulative
PTV contributed by the principal components in the presence of 0%, 15% and 30%
outliers, respectively. (g-i) Inner product between true PC vector wi and its estimates
ŵi in the presence of 0%, 15% and 30% outliers, respectively. (j-l) MSE of ŵi in the
presence of 0%, 15% and 30% outliers, respectively.
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if the inner product (IP)

wT
i ŵi = 1, (3.1)

or equivalently, the mean square error (MSE)

MSE(ŵi) = ||ŵi −wi||2/m = 0, (3.2)

for all i = 1, 2, ..., 5, where ŵi is the estimate of wi and m=5 is the length of wi. It
should be noted here that MSE(ŵi) measures the distance between ŵi and wi, and
hence MSE(ŵi) > 0 for ŵi ̸= wi. The criterion MSE(ŵi) can only be used for the
performance evaluation of PCA algorithms when the true principal eigenvector wi is
known. This criterion cannot be used in the case of real data analysis due to the
unknown principal eigenvectors. To apply the proposed method in each case of five
dimensional datasets, we select β by cross validation as before. We obtained that ap-
propriate values of β= 0, 0.05 and 0.1 for the proposed method in the presence of 0%,
15% and 30% outliers, respectively. Figures 3(a-c) represent the percentage of total
variation (PTV) contributed by each PC in the presence of 0%, 15% and 30% outliers,
respectively. The dashed line with marker style (⋄) represent the true PTV for each
PC, while the dashed line with marker style (*), the dash-dot line with marker style
(×) and the solid line with marker style (o) represent the estimated PTV by classi-
cal method, minimum Ψ-principle and the proposed method, respectively. Similarly,
Figures 3(d-f) represent the cumulative PTV explained by the PC in the presence of
0%, 15% and 30% outliers, respectively. The dashed line with marker style (⋄) rep-
resent the true cumulative PTV by each PC, while the dashed line with marker style
(*), the dash-dot line with marker style (×) and the solid line with marker style (o)
represent the estimated cumulative PTV by classical method, minimum Ψ-principle
and the proposed method as before, respectively. Figures 3(g-i) represent the inner
product (IP) between the true PC vector (wi) with its estimate (ŵi; i=1,2,...,5) in the
presence of 0%, 15% and 30% outliers, respectively. The dash-dot line with marker
style (×) and the solid line with marker style (o) represent the IP with the estimates of
classical method, minimum Ψ-principle and the proposed method, respectively. Simi-
larly, Figures 3(j-l) represent the MSE for the estimates of PC vector in the presence
of 0%, 15% and 30% outliers, respectively. The dash-dot line with marker style (×)
and the solid line with marker style (o) represent the MSE with the estimates of clas-
sical method, minimum Ψ-principle and the proposed method as before, respectively.
Figure 3(a,d) shows that the percentage of total variation (PTV) as well as cumu-
lative PTV by the estimated PC1,..., PC5 based on classical, minimum Ψ-principle
and proposed methods are almost same as the PTV as well as cumulative PTV ob-
tained by the true PC1... PC5, respectively in the absence of outliers. We have also
investigated the performance of these methods in the absence of outliers using IP and
MSE as defined in (3.1) and (3.2), respectively. From figures 3(g,j), we observe that
IP is almost close to 1 (i.e., IP≈1) and smaller MSE occurs (i.e., MSE≈0) for each of
PC1,..., PC5 based on each of classical, minimum Ψ-principle and proposed methods.
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Therefore, performance of all of three methods are good in the absence of outliers.
Now comparing figures, 3(a) with 3(b-c), 3(d) with 3(e-f), 3(g) with 3(h-i), and 3(j)
with 3(k-l), clearly we see that performance of classical PCA is not good at all in the
presence of outliers. In the presence of 15% outliers, performance of both minimum
Ψ-principle and the proposed method are good and almost equivalent, however, in the
presence of 30% outliers, the performance of minimum Ψ-principle is not good; while
the performance of the proposed method is good in this case also.

3.1 Real Data Analysis

In a study of size and shape relationships for painted turtles, Jolicoeur and Mosimann
measured carapace length, width and height of 24 male turtles. Their data in terms of
logarithms is analyzed using classical PCA in pages 441-443 of Johnson and Wichern
(2002). To demonstrate the performance of our proposed method for real data analysis
in a comparison of the classical PCA algorithm, we consider their data in terms of
logarithms as given in table 1, where last 6 data points (bold) are newly included
as outliers. First we perform PCA by the proposed method in absence outliers for
comparison with the existing classical PCA results that is discussed in Johnson and
Wichern (2002). We have presented the existing results (plain) along with our proposed
results (bold) in table 2 for convenience of comparison between two methods in the
absence of outliers.

Table 1: Carapace Measurements (in Millimeters) for Painted Turtles
ln(Length) ln(Width) ln(Height) ln(Length) ln(Width) ln(Height)

(X1) (X2) (X3) (X1) (X2) (X3)

4.532599 4.304065 3.610918 4.779123 4.532599 3.713572
4.543295 4.356709 3.555348 4.787492 4.488636 3.688879
4.564348 4.382027 3.555348 4.787492 4.532599 3.784190
4.615121 4.430817 3.663562 4.795791 4.553877 3.737670
4.624973 4.442651 3.637586 4.828314 4.532599 3.806662
4.634729 4.394449 3.610918 4.844187 4.564348 3.806662
4.644391 4.418841 3.663562 4.852030 4.553877 3.806662
4.663439 4.418841 3.663562 4.875197 4.553877 3.828641
4.672829 4.406719 3.637586 4.905275 4.663439 3.850148
4.718499 4.488636 3.688879 10.596635 20.126631 9.903488
4.727388 4.477337 3.688879 15.596635 9.903488 19.615805
4.736198 4.454347 3.688879 9.903488 21.289782 11.407565
4.753590 4.499810 3.761200 10.463103 3.401197 13.710150
4.762174 4.499810 3.713572 10.308953 2.302585 22.429216
4.762174 4.510860 3.713572 10.596635 19.903488 9.615805
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To investigate the robustness of the proposed method in comparison of the classical
PCA for real data analysis, we perform PCA by both the classical and the proposed
methods. We have presented the classical PCA results (plain) along with our proposed
results (bold) in table 3 for convenience of comparison as before between two methods
in the presence of outliers. In both tables 2 and 3, the notation ŵi denotes the
orthogonal vector for computing ith principal components and the notation rŷ1,xk

in
parentheses represents the correlation coefficient between PC1 (first PC) and kth input
variable (Xk). Comparing the values of rŷ1,xk

, ŵi’s, λi’s and cumulative PTV from
table 2, we see that performance of both classical PCA and the proposed methods
are almost same in absence of outliers. Therefore the proposed PCA results are good
in the absence of outliers, since the classical PCA results are good in the absence of
outliers. Again we see that classical PCA results in the presence of outliers (from table
3) are completely different from the classical PCA results in the absence of outliers
(from table 2), while the proposed PCA results in the presence of outliers (from table
3) are almost same as the classical PCA results in the absence of outliers (from table
2). Now if we fix cumulative PTV 97 as the threshold to select the PC’s for further
investigation, we can select only PC1 having contribution rate around 96% in the
total variation by both classical and proposed methods in the absence of outliers.
However, in the presence of outliers, we need to select classical PC1 and PC2 having
cumulative contribution rate around 96% in the total variation, while we can select
only proposed PC1 having contribution rate around 96% in the total variation as
before. Thus classical PCA produces misleading results for dimensionality reduction
in the presence of outliers, while the proposed PCA produces appropriate results in
presence of outliers also. Therefore, the proposed method improves the performance
over the classical method in the presence of outliers; otherwise it keeps almost equal
performance in the case of real data analysis also.
The proposed algorithm converges within 15 iterations. The computational time of the
proposed method as shown in figures 1 & 3, and in tables 2 & 3 are needed around 190,
220 and 170 seconds, respectively. For computation, I used MATLAB programming
version 6.5 in my Laptop with system Intel Pentium M-processor 1.64GHz, 1.25 GB
of RAM.

Table 2: PCA results in the absence of outliers. Results in parentheses
represent the correlation coefficients. Bold numbers represent the results

of the proposed method
Variables ŵ1(rŷ1,xk

) ŵ2 ŵ3

ln(Length) 0.683 (0.99) -0.159 -0.713
0.680 (0.99) -0.157 -0.711

ln(Width) 0.510 (0.97) -0.594 0.622
0.512 (0.97) -0.592 0.620

ln(Height) 0.523 (0.97) 0.788 0.324
0.524 (0.98) 0.778 0.321

Variance (λi) 23.30×10−3 0.60×10−3 0.36×10−3

23.10×10−3 0.59×10−3 0.37×10−3

Cumulative PTV 96.1 98.5 100
96.2 98.8 100
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Table 3: PCA results in the presence of outliers. Results in parentheses
represent the correlation coefficients. Bold numbers represent the results

of the proposed method
Variables ŵ1(rŷ1,xk

) ŵ2 ŵ3

ln(Length) -0.550 (-0.96) 0.034 0.841
0.683 (0.99) -0.154 -0.709

ln(Width) -0.330 (-0.77) -0.902 -0.305
0.511 (0.99) -0.591 0.624

ln(Height) -0.783 (-0.93) 0.395 -0.499
0.519 (0.98) 0.785 0.318

Variance (λi) 18048.62×10−3 3079.42×10−3 811.29×10−3

24.14×10−3 0.61×10−3 0.40×10−3

Cumulative PTV 82.22 96.30 100
96.05 98.50 100

4 Conclusion

This paper discusses the robust principal component analysis based on the robust
estimation of multivariate normal distribution. The minimum β-divergence method
is used for robust estimation of the mean vector µ and the covariance matrix Σ of
the multivariate normal distribution. The performance of this method depends on the
value of the tuning parameter β. It is equivalent to the classical PCA algorithm for
β = 0. A cross-validation technique is discussed as an adaptive selection procedure
for the tuning parameter β in the subsection (2.2.1). Simulation results show that the
performance of the the proposed method is equivalent to the classical PCA method
in the absence of outliers. In the presence of few outliers, the performance of the
proposed method is almost equivalent to the adaptive robust PCA algorithm based
on the minimum Ψ-principle (Higuchi and Eguchi, 2004). However it shows better
performance in the presence of huge amount of outliers.

References

Campbell, N. A. (1980). Robust procedures in multivariate analysis 1: Robust co-
variance estimation. Appl. Statist., 29, 231-237.

Croux, C. and Haesbroeck, G. (2000): Principal component analysis based on robust
estimators of the covariance or correlation matrix: Influence functions and efficien-
cies. Biometrika, 87, 603-618.



Mollah, Hossain and Mollah: Robust Principal Component Analysis 35

Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J. and Stahel, W.A. (1986): Robust
Statistics: The Approach Based on Influence Functions. Wiley, New York.

Hastie, T., Tibshirani, R. and Friedman, J. (2001): The Elements of Statistical Learn-
ing. New York: Springer.

Higuchi, I. and Eguchi, S. (2004): Robust Principal Component Analysis With Adap-
tive Selection for Tuning Parameters. J. Machine Learning Research 5, 453-471.
82(397):249-266.

Hotelling, H. (1933): Analysis of a complex of statistical variables into principal com-
ponents. Jounnal of Educational Psychology, 24, 417-441.

Johnson, R. A., Wichern, D.W. (2002): “Applied multivariate statistical analysis
”Fifth edition, Prentice-Hall.

Jolliffe, I. T. (2002): Principal Component Analysis. Springer-Verlag.

Minami, M. and Eguchi, S. (2002): Robust Blind Source Separation by beta-
Divergence. Neural Computation 14, 1859-1886.

Mollah, M. N. H., Minami, M. and Eguchi, S. (2006): Exploring Latent Structure of
Mixture ICA Models by the Minimum β-Divergence Method, Neural Computation,
18(1), pp. 166-190.

Mollah, M. N. H., Minami, M. and Eguchi, S. (2007): Robust prewhitening for ICA by
minimizing β-divergence and its application to FastICA. Neural Processing Letters,
25(2), pp. 91-110.

Mollah, M. M. H., Hossain, M. G. and Mollah, M. N. H. (2008): Robust Estimation
for Multivariate Normal Distribution. Journal of Applied Statistical Science, Vol.
16(3), pp. 377-386.

Xu, L. and Yuille, A. (1995): Robust principal component analysis by self-organizing
rules based on statistical physics approach. IEEE Trans. on Neural Networks, 6,
131-143.


